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ABSTRACT

Real-world optimisation problems often involve uncertainties. In
the past decade, several rigorous analysis results for evolutionary
algorithms (EAs) on discrete problems show that EAs can cope with
low-level uncertainties, and sometimes benefit from uncertainties.
Using non-elitist EAs with large population size is a promising
approach to handle higher levels of uncertainties. However, the
performance of non-elitist EAs in some common fitness-uncertainty
scenarios is still unknown.

We analyse the runtime of non-elitist EAs on OneMax and
LeadingOnes under prior and posterior noise models, and the
dynamic binary value problem (DynBV). Our analyses are more
extensive and precise than previous analyses of non-elitist EAs. In
several settings, we prove that the non-elitist EAs beat the current
state of the art results. Previous work shows that the population
size and mutation rate can dramatically impact the performance of
non-elitist EAs. The optimal choices of these parameters depend on
the level of uncertainties in the fitness functions. We provide more
precise guidance on how to choose mutation rate and population
size as a function of the level of uncertainties.
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1 INTRODUCTION

In real-world optimisation problems, a wide range of uncertainties
has to be considered [25]. Runtime analyses of EAs have considered
∗Authors are listed in alphabetical order.
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four abstracted uncertainty models which are prior noise, posterior
noise, dynamic environment and partial evaluation. The prior noise
randomly flips one or several bits before each evaluation, e.g. one-bit
noise [9], which flips one bit uniformly with probability q, and bit-
wise noise [21], which flips each bit independently with probability
p, while the posterior noise, also called additive noise, adds a random
value after each evaluation, e.g. Gaussian noise [13], which adding a
value sampled from N

(
0,σ 2) . In dynamic optimisation, the fitness

function is fixed in each generation but is varied by time, e.g. the
noisy linear function [18] and DynBV problem [16].

The simple (1+1) EA is robust to some uncertainty but also can be
inefficient under high-level uncertainties. For example, the runtime
of the (1+1) EA on LeadingOnes is exponential if q = Ω(1) and
p = Ω

(
1/n2) under one-bit noise and bit-wise noise respectively [13,

21, 23]. Some algorithms can furthermore improve the robustness,
such as estimation of distribution algorithms (EDAs) [10, 15], ant
colony optimisation (ACO) [12], the (1+1) EA using resampling
strategy [21, 22] and population-based algorithms [3, 4, 13, 20].
For the efficiency of non-elitist EAs under uncertainties, Dang and
Lehre [3] showed that binary tournament selection with a sufficient
population size and a conservative mutation rate has expected
runtimeO(n log(n) log(log(n))) onOneMax under any one-bit noise
level. They also proved that the non-elitist EA can handle extremely
high-level additive noises [3] and partial evaluation optimisation [4].
However, the robustness of non-elitist EAs to noise is still unknown
in several settings. Tables 1-6 summarise recent theoretical studies
(including this paper) of EAs in noisy settings. Note that some
previous studies do not contain exact runtimes. In these cases, the
runtime results are deduced from the proofs. For the robustness
in the dynamic environments, Lengler and Schaller [18] proved
that the (1+1) EA can optimise the random weights linear function,
in which the weights in each generation are randomly sampled,
in O(n log(n)) times. However, the efficiency of population-based
algorithms in this setting is currently unknown, though Lengler
and Riedi [17] analysed the (µ + 1) EA on the DynBV assuming that
the population is initialised close to the optimum.

Parameter configuration can dramatically impact the perfor-
mance of random search algorithms [7, 14]. Although non-elitist
EAs have been proved to optimise pseudo-Boolean functions under
uncertainties [3, 4], precise parameters settings are not clear. Dang
and Lehre [3] also states that a sufficiently large enough population
size and a moderate mutation rate are beneficial for the non-elitist
EAs to handle noise, but they do not give precise ranges of the
mutation rate according to the level of uncertainties.

In this paper, we derive a general theorem (Theorem 2) for the
non-elitist EA with 2-tournament selection (Algorithm 1) under

https://doi.org/10.1145/3449639.3459312
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uncertainties. Then we analyse the runtime of Algorithm 1 on One-
Max and LeadingOnes under prior and posterior noise models. In
noisy settings, our analyses are more extensive and precise than
previous analyses of non-elitist EAs [3]. In several settings, we
prove that the non-elitist EAs beat the current state of the art re-
sults (see Tables 1-6). Note that the runtime for a certain level of
noise can be obtained by plugging the noise level and the appro-
priate parameters into the general results in these tables. We also
provide more precise guidance on how to choose mutation rate and
population size as a function of the level of uncertainties. Finally,
we prove for the first time that non-elitist EAs can optimise the
DynBV problem in polynomial time.

2 PRELIMINARIES

In this paper, we consider a non-elitist EA with binary tournament
selection optimising three noisy versions and one dynamic version
of pseudo-Boolean functions. We first define some notations which
are used later. For any integer n > 0, we define [n] := {1, . . . ,n}
and [0..n] := {0} ∪ [n]. We use H(·, ·) to denote Hamming-distance.
The natural logarithm is denoted by ln(·), and the logarithm to the
base 2 is denoted by log(·). Let f : X → R be any pseudo-Boolean
function, where X = {0, 1}n is the set of bitstrings of length n.

2.1 Uncertainties

We consider two well-known pseudo-Boolean functions OneMax
and LeadingOnes which are defined as OM(x) := ∑n

i=1 xi and
LO(x ) := ∑n

i=1
∏i

j=1 x j respectively. In this paper, we consider three
noise models and the DynBV problem which are defined as follows.

For noisy optimisation, we use f n (x ) instead of f (x ). The one-bit
noise model (q) [9, 12, 13, 15, 21, 23] is the easiest starting point for
theoretical analysis, which can be described as: given a probability
q ∈ [0, 1] and a solution x ∈ {0, 1}n , then

f n (x ) =

{
f (x ) with probability 1 − q
f (x ′) with probability q

where x ′ is a uniformly sampled Hamming neighbour of x .
In real-world problems, the noise can affect a stochastic number

of bits rather than at most one bit. The bit-wise model (p) [13, 21, 23]
can more closely imitate reality: given a probability p ∈ [0, 1] and
a solution x ∈ {0, 1}n , then f n (x ) = f (x ′) where x ′ independently
flips each bit of the original solution x with probability p.

The Gaussian noise model (σ 2) [3, 10, 13, 22] is a type of additive
noise, which adds a value independently sampled from a normal
distribution in each evaluation. We can define it as: given a number
σ ≥ 0 and a solution x ∈ {0, 1}n , then f n (x ) = f (x ) +N (0,σ 2).

For dynamic optimisation, we use f t (x) instead of f (x), where
t ∈ N represents the current generation. Unlike noisy optimisation,
the uncertainty of dynamic optimisation is reflected in different
generations rather than in different evaluations. For example, the
weight of each bit position is sampled from a distribution in each
generation and each individual is evaluated by computing weighted
sum in the random linear function [18]. The DynBV problem is
a special case of the random linear function [18], which was first
proposed by Lengler and Meier [16]. It can be regarded as a dy-
namic version of the BinVal problem. For the DynBV problem, we

Algorithm 1 Non-elitist EA with 2-tournament selection
Require: Fitness function f : X → R; Population sizes λ ∈ N

where λ ≥ 2; Mutation parameter χ ∈ (0,n); Initial population
P0 ∈ Xλ .

1: for t = 0, 1, 2, ... until termination condition met do
2: for i = 1 to λ do

3: x1 ← Pt (i1) where i1 ∽ Uniform([λ])
4: x2 ← Pt (i2) where i2 ∽ Uniform([λ])
5: if f (x1) ≥ f (x2) then z ← x1 else z ← x2
6: Pt+1(i)← y

(y created by mutating z with mutation rate χ/n).
7: end for

8: end for

uniformly sample a new permutation πt : [n]→ [n] and evaluate
the individuals in the t-th generation by f t (x ) = ∑n

i=1 2n−ixπt (i ).

2.2 Non-elitist EA with 2-tournament selection

The non-elitist EA studied in this paper is shown in Algorithm 1. In
the t-th generation, we define the population Pt ∈ Xλ , where λ ≥ 2
is the population size. Algorithm 1 adopts the binary tournament
selection mechanism which uniformly selects two individuals x1
and x2, thenmutates the fittest one with mutation rate χ/n and adds
it into the next population Pt+1. For noisy optimisation, we compare
the pair of individuals based on the noisy function f n (x ) instead of
f (x ). Note that the reevaluation strategy [3, 12, 13, 21, 22] is applied
in this study which means the noisy fitness value of an individual
will be reevaluated though it might have been evaluated before in
this generation. Similarly, for the dynamic optimisation, we replace
f (x1) ≥ f (x2) with f t (x1) ≥ f t (x2) in line 5 of Algorithm 1.

2.3 Level-based analysis

The level-based theorem [2] is a runtime analysis tool used to ob-
tain upper bounds on the runtime of many non-elitist EAs on a
wide variety of optimisation problems [2, 5, 8]. The theorem applies
to algorithms that follow the scheme of Algorithm 2. The search
space X is partitioned intom + 1 disjoint subsets A0, A1, ..., Am ,
which are called levels. The final level Am consists of the optimal
solution of function f . We denote A≥ j := ∪mk=jAk which means at
least level j. In this theorem, we consider that each individual is
sampled from a distribution rather than consider genetic operators,
such as selection and mutation. For example, line 3 of Algorithm 2
is responding to lines 3-6 of Algorithm 1.

Algorithm 2 Population-based Algorithm
Require: Finite state space X and population size λ ∈ N; Map D

from Xλ to the space of probability distribution over X
Require: Initial population P0 ∈ Xλ

1: for t = 0, 1, 2, ... until termination condition met do
2: for i = 1 to λ do

3: Sample Pt+1(i) ∼ D(Pt )
4: end for

5: end for
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Table 1: Theoretical results of evolutionary algorithms on OneMax in the one-bit noise model (q)

Algorithm Parameters setting Noise level q Runtime

(1+1) EA χ/n = 1/n O(1/n) Θ(n log(n)) [13]
χ/n = 1/n O(log(n)/n) poly(n) [13]
χ/n = 1/n ω(log(n)/n) 2ω(log(n)) [13]

(1+1) EA (resampling) χ/n = 1/n ;m = 4n3 [0, 1] poly(n) [21]
(µ+1) EA χ/n = 1/n; µ > 12 log(15n)/q (0, 1] O (µn log(n)) [13]
(1+λ) EA χ/n = 1/n; λ ≥ max{12/p, 24}n logn (0, 1] O

(
n2λ

)
[13]

ACO-fp ρ = o
(
1/

(
n3 logn

) )
[0, 1] O

(
n2 log(n)/ρ

)
[12]

Non-elitist EA χ/n ∈ (0, ln(1 + 2θζ )/n); λ ∈ Ω(log(n/χ )) [0, 1] O (λn log(1/χ ) + n log(n)/χ )
using tournament selection θ = 1/2 − (q/2)(1 − q/2) − q/2n0, (Theorem 4)
(k = 2) for any constant ζ ∈ (0, 1),n0 ≥ 3;

Table 2: Theoretical results of evolutionary algorithms on LeadingOnes in the one-bit noise model (q)

Algorithm Parameters setting Noise level q Runtime

(1+1) EA χ/n = 1/n [0, 1/2] Θ
(
n2) eΘ(min{qn2,n}) [23]

(1+1) EA (resampling) χ/n = 1/n ;m = 4n4 log(n)/15 [0, 1] O(mn8) [21]
(1+λ) EA χ/n = 1/n; λ ≥ 3.42 log(n), λ ∈ O(n) [0, 1/2] O

(
n2eO (n/λ)

)
[23]

UMDA µ ≥ c log(n); λ > 4e(1 + δ )µ for constants c, δ ; [0, 1) O(nλ log(λ) + n2) [15]
Non-elitist EA χ/n ∈ (0, ln(1 + 2θζ )/n); λ ∈ Ω(log(n/χ )) [0, 1) O

(
nλ log(n/χ ) + n2/χ

)
using tournament selection θ = 1/2 − q(1 − q/2), (Theorem 5)
(k = 2) for any constant ζ ∈ (0, 1);

Table 3: Theoretical results of evolutionary algorithms on OneMax in the bit-wise noise model (p)

Algorithm Parameters setting Noise level p Runtime

(1+1) EA χ/n = 1/n O(1/n2) Θ(n log(n)) [13]
χ/n = 1/n O(log(n)/n2) poly(n) [13]
χ/n = 1/n ω(log(n)/n2) 2ω(log(n)) [13]

(1+1) EA (resampling) χ/n = 1/n;m = n3+2c/4 p = 1/2 − 1/nc for
0 < c = Θ(1)

poly(n) [21]

Non-elitist EA χ/n ∈ (0, ln(1 + 2θζ )/n) (0, 1/2) O
(
n(1+pn)
(1−2p)2

(
λ log

(
1
χ

)
+ log(n)

χ

))
using tournament selection θ = 9(1/2 − p)/

(
64
√

2pn + 16
)
, (Theorem 6)

(k = 2) for any constant ζ ∈ (0, 1);
λ ∈ Ω

(
1+pn
(1−2p)2

log
(

n
(1−2p)χ

))
Table 4: Theoretical results of evolutionary algorithms on LeadingOnes in the bit-wise noise model (p)

Algorithm Parameters setting Noise level p Runtime

(1+1) EA χ/n = 1/n [0, 1/(2n)] Θ
(
n2) eΘ(min{pn3,n}) [23]

(1+1) EA (resampling) χ/n = 1/n;m = 36n2c+4 p = c log(n)/n for 0 < c = Θ(1) 12m · n30c+1 [21]
χ/n = 1/n;m ∈ O(poly(n)) ω(log(n)/n) eΩ(n) [21]

Non-elitist EA χ/n ∈ (0, ln(1 + 2θζ )/n); [0, 1/3) O
(
ne6np

(1−3p)2
(
λ log

(
n
χ

)
+ n

χ

))
using tournament selection λ ∈ Ω

(
e6np

(1−3p)2
log

(
n
χ

))
(Theorem 7)

(k = 2) θ = (1/2 − p) e−3np ,
for any constant ζ ∈ (0, 1)
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Table 5: Theoretical results of evolutionary algorithms on OneMax in the Gaussian noise model (σ 2)

Algorithm Parameters setting Noise level σ Runtime

(1+1) EA χ/n = 1/n σ 2 ≤ 1/(4 log(n)) O (n log(n)) [13]
χ/n = 1/n σ 2 ≥ 1 eΩ(n) [22]

(1+1) EA (resampling) χ/n = 1/n;m = ⌈ nσ
2

log(n) ⌉ 1 ≤ σ 2 ∈ poly(n) poly(n) [22]
(µ + 1)EA χ/n = 1/n; µ ∈ poly(n) σ ≥ n3 2ω(log(n)) [11]
cGA K = ω

(
σ 2√n log(n)

)
σ 2 > 0 O

(
Kσ 2√n log(Kn)

)
[10]

ACO-fp ρ = o
(
1/

(
n(n + σ logn)2 logn

) )
σ 2 ≥ 0 O

(
n2 log(n)/ρ

)
[12]

Non-elitist EA χ/n ∈ (0, ln(1 + 2θζ )/n); λ ∈ Ω(σ 2 log(n/χ )) σ 2 > 0 O(σ 2λn log(1/χ )+
using tournament selection θ = 1/(6 + 48σ/π ), σ 2n log(n)/χ )
(k = 2) for any constant ζ ∈ (0, 1); (Theorem 8)

Table 6: Theoretical results of evolutionary algorithms on LeadingOnes in the Gaussian noise model (σ 2)

Algorithm Parameters setting Noise level σ Runtime

(1+1) EA χ/n = 1/n σ 2 ≤ 1/
(
12en2) O

(
n2) [13]

χ/n = 1/n σ 2 ≥ n2 Ω (en ) [22]
(1+1) EA (resampling) χ/n = 1/n;m = ⌈12en2σ 2⌉ n2 ≤ σ 2 ∈ poly(n) O(mn2) [22]
Non-elitist EA χ/n ∈ (0, ln(1 + 2θζ )/n); λ ∈ Ω(σ 2 log(n/χ )) σ 2 > 0 O

(
σ 2λn log(n/χ ) + σ 2n2/χ

)
using tournament selection θ := 1/(6 + 48σ/π ), (Theorem 8)
(k = 2) for any constant ζ ∈ (0, 1);

Theorem 1 (Level-based theorem [2]). Given a partition (A0,
A1, ...,Am ) of a finite state spaceX, letT := min{tλ | |Pt ∩Am |> 0}
be the first point in time that the elements of Am appear in Pt of

Algorithm 2. If there exist z0, z1, ..., zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1)
such that for any population P ∈ Xλ ,

(G1) for all j ∈ [0..m − 1], if |P ∩A≥j |≥ γ0λ then

Pr
y∼D(P )

(
y ∈ A≥j+1

)
≥ zj ,

(G2) for all j ∈ [0..m − 2], and all γ ∈ (0,γ0], if |P ∩ A≥j |≥ γ0λ
and |P ∩A≥j+1 |≥ γλ then Pr

y∼D(P )

(
y ∈ A≥j+1

)
≥ (1 + δ )γ ,

(G3) and the population size λ ∈ N satisfies

λ ≥ 4/(γ0δ
2) ln

(
128(m + 1)/(z∗δ2)

)
where z∗ := min

{
zj

}
,

then E[T ] ≤ 8
δ 2

∑m−1
j=0

(
λ ln

(
6δλ

4+zjδλ

)
+ 1

zj

)
.

3 MAIN RESULT

In this section, we introduce our main result (shown in Theorem 2)
which is an upper bound of the expected runtime of Algorithm 1
in uncertain environments. The proof is followed.

Theorem 2. Let (A0, A1,...,Am ) be a fitness partition of a finite

state space X. If there exist h0, h1, ..., hm−1 and θ ∈ (0, 1/2], and let
T := min{2tλ | |Pt ∩ Am |> 0} be the first point in time that the

elements ofAm appear in Pt of Algorithm 1 with noisy function f n (x )
and mutation rate χ/n, where χ ∈ (0, ln(1 + 2θζ )) for an arbitrary

constant ζ ∈ (0, 1), such that, for an arbitrary constant ξ ∈ (0, 1/16),
(C1) for all j ∈ [0..m − 1], Pr(y ∈ A≥j+1 | z ∈ Aj ) ≥ hj ,
(C2) for all j ∈ [0..m − 2], and all search points x1 ∈ A≥j+1 and

x2 ∈ A≤j , it follows Pr(f n (x1) > f n (x2)) + 1
2 Pr(f n (x1) =

f n (x2)) ≥ 1
2 + θ ,

(C3) and the population size λ ∈ N satisfies

λ >
4 (1 + o(1))
θ2ξ (1 − ζ )4

ln
(

128(m + 1)
θ2ξ (1 − ζ )4 min{hj }

)
,

then E[T ] < 16(1+o(1))
θ 2ξ (1−ζ )2

∑m−1
j=0

(
λ ln

(
6

ξ (1−ζ )2hj

)
+ 1

ξ (1−ζ )2hj

)
.

Proof. We use the level-based theorem (Theorem 1) to prove
Theorem 2. Firstly, we derive some inequalities which are used later.
From θ ∈ (0, 1/2], ζ ∈ (0, 1) and 0 < χ < ln(1 + 2θζ ) which are
assumptions of Theorem 2, we can get

e χ < 1 + 2θζ (1)
(1 + 2θ ) − e χ > 2θ (1 − ζ ). (2)

Then we define ε and γ0 which are used later. Let constant ε :=(
1 +

√
1 − 4

√
ξ

)
/2, and we know that ε ∈ (1/2, 1) by ξ ∈ (0, 1/16).

We define γ0 := (1+2θ )−exp(χ )
2θ (1 − ε). By Eq. (2), we know that

γ0 =
(1 + 2θ ) − e χ

2θ
(1 − ε) >

2θ (1 − ζ )(1 − ε)
2θ

= (1 − ζ )(1 − ε). (3)

We first show that condition (G2) of Theorem 1 holds. We define
the current level to be the highest level j ∈ [0..m] such that there
are at least γ0λ individuals in level j or higher, and there are fewer
than γ0λ individuals in level j + 1 or higher. Then assume that
the current level is j ≤ n − 2, which means there are at least γ0λ
individuals of the population Pt in A≥j , and at least γλ but less
than γ0λ individuals in A≥j+1. Let x1 and x2 be the individuals
selected from the population Pt in lines 3 and 4, z be the solution
after comparison in line 5, and y be the solution after mutating
corresponding to line 6 of Algorithm 1.
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Now we estimate a lower bound on the probability that the
offspring y is still in A≥j+1. By the law of total probability,

Pr(y ∈ A≥j+1) ≥ Pr(z ∈ A≥j+1) · Pr(y ∈ A≥j+1 |z ∈ A≥j+1).

The probability of selecting an individual z which is inA≥j+1 via
binary tournament is composed of two cases. The first case is both
x1 and x2 which are selected in lines 3 and 4 of Algorithm 1 are in
A≥j+1 whose probability is at least γ 2. The second case is that x1
or x2 is evaluated to be in A≥j+1, whereas the other is evaluated
to be in A≤j . In this case, noise leads to incorrect comparison in
line 5 of Algorithm 1 with some probability. Let S be the event of
a successful comparison, i.e. the better individual of x1 and x2 is
exactly selected from line 5. Hence, the second case occurs with
probability 2(1 − γ )γ Pr(S). Then,

Pr(z ∈ A≥j+1) ≥ γ 2 + 2(1 − γ )γ Pr(S).

To estimate a lower bound for Pr(S), without loss of generality,
we assume that x1 ∈ A≥j+1 and x2 ∈ A≤j . Then, by condition (C2),

Pr(S) = Pr(f n (x1) > f n (x2)) +
1
2

Pr(f n (x1) = f n (x2)) ≥
1
2

+ θ .

To estimate a lower bound for Pr(y ∈ A≥j+1 | z ∈ A≥j+1), we
only consider the case that the mutation operator does not flip any
bits, then by Lemma 11 and Lemma 10,

Pr(y ∈ A≥j+1 | z ∈ A≥j+1)

≥

(
1 −

χ

n

)n
≥ e−χ

(
1 −

χ2

n

)
≥ e−χ

(
1 −

2θ
n

)
for all n > 1.

Overall, we can get a lower bound for Pr(y ∈ A≥j+1) by plugging
in Pr(z ∈ A≥j+1), Pr(y ∈ A≥j+1 |z ∈ A≥j+1) and Pr(S),

Pr(y ∈ A≥j+1)

>
(
γ 2 + 2(1 − γ )γ Pr(S)

)
e−χ

(
1 −

2θ
n

)
≥

(
γ 2 + 2(1 − γ )γ

(
1
2

+ θ

))
e−χ

(
1 −

2θ
n

)
≥ γ (1 + 2θ − 2θγ0) e

−χ
(
1 −

2θ
n

)
by definition of γ0 = (1+2θ )−exp(χ )

2θ (1 − ε),

= γ
(
1 + 2θ −

(
1 + 2θ − e χ

)
+

(
1 + 2θ − e χ

)
ε
)
e−χ

(
1 −

2θ
n

)
= γ

(
1 +

(
1 + 2θ − e χ

)
εe−χ

) (
1 −

2θ
n

)
letting δ := (1 + (1 + 2θ − e χ ) εe−χ ) (1 − 2θ/n) − 1,

= γ (1 + δ ). (4)

Now we prove that δ > 0,

δ =
(
1 +

(
1 + 2θ − e χ

)
εe−χ

) (
1 −

2θ
n

)
− 1

by Eq. (1),

>
(
1 + 2θe−χ ε(1 − ζ )

) (
1 −

2θ
n

)
− 1

= 2θe−χ ε(1 − ζ ) −
2θ
n

(
1 + 2θe−χ ε

)
+

4θ2e−χ εζ

n

> 2θe−χ ε(1 − ζ ) −
6θ
n

= θ

(
2e−χ ε(1 − ζ ) −

6
n

)
by Eq. (1), we have e χ < 1 + 2θζ < 1 + 2θ < 2,

> θ

(
ε(1 − ζ ) −

6
n

)
= θε(1 − ζ ) (1 − o(1)) . (5)

Thus, we get δ > 0 so condition (G2) of Theorem 1 holds from Eq. 4.
To verify condition (G1), we need to estimate the probability of

increasing the level of the population. We assume there are at least
γ0λ individuals in Aj where j ∈ [0..m − 1]. We only consider the
case that the selected individuals are both in Aj in lines 3 and 4 of
Algorithm 1, and the individual increases its level after mutation,

Pr(y ∈ A≥j+1) ≥ γ 2
0 Pr(y ∈ A≥j+1 | z ∈ A≥j ) ≥ γ 2

0hj =: zj .

Condition (G3) requires the population size to satisfy

4
γ0δ2 ln

(
128(m + 1)
min{zj }δ2

)
≤

4
γ0δ2 ln

(
128(m + 1)

γ 2
0 min{hj }δ2

)
by Eq. (3) and (5),

<
4 (1 + o(1))

(1 − ζ )(1 − ε) (θε(1 − ζ ))2

· ln

(
128(m + 1) (1 + o(1))

(1 − ζ )2(1 − ε)2 (θε(1 − ζ ))2 min{hj }

)
=

4 (1 + o(1))
θ2ε2(1 − ε)(1 − ζ )3

ln
(

128(m + 1)
θ2ε2(1 − ε)2(1 − ζ )4 min{hj }

)
<

4 (1 + o(1))
θ2ε2(1 − ε)2(1 − ζ )4

ln
(

128(m + 1)
θ2ε2(1 − ε)2(1 − ζ )4 min{hj }

)
because ε2(1 − ε)2 = ξ by the definition of ε =

(
1 +

√
1 − 4

√
ξ

)
/2,

<
4 (1 + o(1))
θ2ξ (1 − ζ )4

ln
(

128(m + 1)
θ2ξ (1 − ζ )4 min{hj }

)
< λ.

Therefore, condition (C3) of Theorem 2 guarantees that the popula-
tion size satisfies condition (G3) of Theorem 1.

Finally, all conditions of Theorem 1 hold and the expected time
(the reevaluation strategy is taken into account) to reach the opti-
mum is no more than

E[T ]

≤ 2 ·
8
δ2

m−1∑
j=0

(
λ ln

(
6δλ

4 + zjδλ

)
+

1
zj

)
<

16
δ2

m−1∑
j=0

(
λ ln

(
6
zj

)
+

1
zj

)
≤

16
δ2

m−1∑
j=0

(
λ ln

(
6

γ 2
0hj

)
+

1
γ 2

0hj

)
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by Eq. (3) and (5),

<
16 (1 + o(1))
θ2ε2(1 − ζ )2

m−1∑
j=0

(
λ ln

(
6

(1 − ε)2(1 − ζ )2hj

)
+

1/hj
(1 − ε)2(1 − ζ )2

)
<

16 (1 + o(1))
θ2ε2(1 − ε)2(1 − ζ )2

m−1∑
j=0

(
λ ln

(
6

ε2(1 − ε)2(1 − ζ )2hj

)
+

1/hj
ε2(1 − ε)2(1 − ζ )2

)
=

16 (1 + o(1))
θ2ξ (1 − ζ )2

m−1∑
j=0

(
λ ln

(
6

ξ (1 − ζ )2hj

)
+

1
ξ (1 − ζ )2hj

)
.

□

4 NOISY OPTIMISATION

Now we can apply Theorem 2 to several noisy settings and derive
the runtime and the parameters required. The most technical part
is to estimate condition (C2) of Theorem 2, that is compute lower
bounds for the probability that the real fitter individual is exactly
selected in line 5 of Algorithm 1. In Lemma 3, we summarise lower
bounds in some scenarios, and the proof is shown in Appendix B.1.

Lemma 3. Let Aj := {x ∈{0, 1}n | f (x) = j} for all j ∈ [0..n] be a
partition. Let x1 and x2 be two individuals in A≥j+1 and A≤j respec-

tively, where j ∈ [0..n−2], then Pr(f n (x1) > f n (x2))+ 1
2 Pr(f n (x1) =

f n (x2)) > 1/2 + θ where

(a) θ = 1/2−q/2(1−q/2)−q/(2n0) for q ∈ [0, 1) and n0 ∈ [3,∞)
on OneMax in the one-bit noise model (q),

(b) θ = 1/2−q(1−q) for q ∈ [0, 1) on LeadingOnes in the one-bit
noise model (q),

(c) θ = 9(1/2−p)
64
√

2pn+16 for p ∈ (0, 1/2) on OneMax in the bit-wise

noise model (p),
(d) θ = (1/2 − 3p/2) e−3np

for q ∈ [0, 1/3) on LeadingOnes in

the bit-wise noise model (p), and
(e) θ = 1/(6 + 48σ/π ) for σ > 0 on OneMax and LeadingOnes

in the Gaussian noise model (σ 2
).

We also need to derive lower bounds for probability of sampling
individuals beyond the current level of the population (condition
(C1)) and the population size required (condition (C3)). Then we
can conclude the runtimes and the mutation rates required from
Theorem 2. In this section, Theorem 4 and 5 show the results in the
one-bit noise model on OneMax and LeadingOnes respectively.
Theorems 6 and 7 show the results in the bit-wise noise model on
OneMax and LeadingOnes respectively. Theorem 8 shows the
results in the Gaussian noise model on OneMax and LeadingOnes.
The proofs of Theorems 4-8 are shown in Appendix B.2-B.6 respec-
tively.

4.1 One-bit noise model

Theorem 4. For any constant q ∈ [0, 1], any constant ζ ∈ (0, 1),
any constant n0 ∈ [3,∞) and any χ ∈ (0, ln(1 + 2θζ )), where
θ := 1/2 − (q/2)(1 − q/2) − q/(2n0), Algorithm 1 with mutation

rate χ/n and population size λ > c log (n/χ ) for a sufficiently large

enough constant c achieves the optimum on OneMax in expected time

O (λn log(1/χ ) + n log(n)/χ ) in the one-bit noise model (q).

Theorem 5. For any constant q ∈ [0, 1) and any constant ζ ∈
(0, 1), any χ ∈ (0, ln(1 + 2θζ )), where θ := 1/2 − q(1 − q/2), Algo-
rithm 1 with mutation rate χ/n and population size λ > c log (n/χ )
for a sufficiently large enough constant c achieves the optimum on

LeadingOnes in expected timeO
(
nλ log (n/χ ) + n2/χ

)
in the one-bit

noise model (q).

Theorems 4 and 5 imply that one-bit noise does not impact
the asymptotical runtime of Algorithm 1 if we choose constant
mutation parameter χ which satisfies the assumption, but we have
less choices of mutation rate as the level of is noise growing. In
contrast, the (1+1) EA becomes inefficient if the noise level is a
constant (see Tables 1 and 2). Compared to other EAs, e.g., ACO-
fp, UMDA and (1+1) EA (resampling), the non-elitist EAs beat the
current state of the art results in these two settings (see Tables 1
and 2).

4.2 Bit-wise noise model

Theorem 6. For any p ∈ (0, 1/2), any constant ζ ∈ (0, 1) and any
χ ∈ (0, ln(1+2θζ )), where θ := 9(1/2−p)/

(
64
√

2pn + 16
)
, Algorithm 1

withmutation rate χ/n and population size λ >
c (1+pn)
(1−2p)2

log
(

n
(1−2p)χ

)
for a sufficiently large enough constant c achieves the optimum on

OneMax in expected time O
(
n(1+pn)
(1−2p)2

(
λ log

(
1
χ

)
+ log(n)

χ

))
in the

bit-wise noise model (p).

By Theorem 6, we can compute that for extremely high-levels of
bit-wise noise, i.e. p = 1/2−1/nb where constant b > 0, Algorithm 1
with mutation rate χ/n = θζ /n which is less than ln(1 + 2θζ )/n
by Lemma 15, i.e., χ = d/nb+1/2 for some constant d > 0, and a
sufficiently large enough population size λ ∈ Ω

(
n2b+1 log(n)

)
has

polynomial expected runtime O
(
n2b+2λ log(n)

)
on OneMax.

Theorem 7. For any p ∈ [0, 1/3), any constant ζ ∈ (0, 1) and
any χ ∈ (0, ln(1 + 2θζ )), where θ := (1/2 − 3p/2) e−3np

, Algorithm 1

with mutation rate χ/n and population size λ ≥ c e6np

(1−3p)2
log

(
n
χ

)
for a sufficiently large enough constant c achieves the optimum on

LeadingOnes in expected time O
(
ne6np

(1−3p)2
(
λ log

(
n
χ

)
+ n

χ

))
in the

bit-wise noise model (p).

Now we consider the case of the extremely high bit-wise noise
p = b log(n)/n for any constant b > 0. By Theorem 7, we can get
that Algorithm 1 with mutation rate χ/n = θζ /n which satisfies the
condition, i.e., χ = d/n3b for some constant d > 0, and a sufficiently
large enough population size λ ∈ Ω

(
n6b log(n)

)
achieves the opti-

mum on LeadingOnes in expected time O
(
n6b+1λ log(n) + n9b+2

)
.

4.3 Gaussian noise model

Theorem 8. For any σ > 0, any constant ζ ∈ (0, 1) and any

χ ∈ (0, ln(1 + 2θζ )), where θ := 1/(6 + 48σ/π ), Algorithm 1 with

mutation rate χ/n and population size λ > cσ 2 log(n/χ ) for a suffi-

ciently large enough constant c achieves the optimum onOneMax and

LeadingOnes in expected timeO
(
σ 2λn log(1/χ ) + σ 2n log(n)/χ

)
and

O
(
σ 2λn log(n/χ ) + σ 2n2/χ

)
respectively in the Gaussian noise model

(σ 2).
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Theorem 8 implies that Algorithm 1 with mutation rate χ/n =
θζ /n, i.e., χ = d/σ for some constant d > 0, and a sufficiently large
enough population size λ ∈ Ω

(
σ 2 log(σn)

)
can optimise OneMax

and LeadingOnes in polynomial runtime even if σ 2 ∈ poly(n). Sim-
ilarly to the optimisation in the bit-wise noise model, the mutation
rate should be fairly conservative and the population size should
be large enough if the noise level is extremely high, e.g., σ = nb

where constant b > 0.

5 DYNAMIC OPTIMISATION

Now we consider dynamic optimisation. We apply the main theo-
rem (Theorem 2) on the DynBV problem and derive the runtime
and the parameters required. The proof idea is similar to noisy
optimisation.

Theorem 9. For any constant ζ ∈ (0, 1) and any χ ∈ (0, ln(1 +
2θζ )), whereθ := 1/(2n), Algorithm 1withmutation rate χ/n and pop-
ulation size λ > cn2 log(n) for a large enough constant c achieves the
optimum on DynBV in expected timeO

(
n3λ log(1/χ ) + n3 log(n)/χ

)
.

Proof. We apply Theorem 2 to prove Theorem 9. We first parti-
tion the search space into levels. We use the partition Aj := { x ∈
{0, 1}n | OM(x) = j } for j ∈ [0..n]. It is easy to see that θ satisfies
the assumption in Theorem 2.

We first show that condition (C2) of Theorem 2 holds. Let x1
and x2 be two individuals inA≥j+1 andA≤j respectively, where j ∈
[0..n−2]. Let E be the event that f t (x1) > f t (x2) or individual x1 is
selected uniformly from {x1, x2} if f t (x1) = f t (x2). The probability
of this event is Pr(f t (x1) > f t (x2)) + 1

2 Pr(f t (x1) = f t (x2)) = Pr(E).
To estimate a lower bound for Pr(E) on DynBV, we pessimisti-

cally assume that x1 ∈ Aj+1 and x2 ∈ A≤j , such that OM(x1) =
OM(x2) + h where h ∈ [1, j]. We assume H(x1, x2) ≤ l + l + h = s ,
where s ≤ n and there exist l bit-positions that x1 is with 1-bit and
x2 is with 0-bit, and there exist another l bit-positions that x1 is
with 0-bit and x2 is with 1-bit, such that x1 and x2 have the same
bit in the rest of n − 2l − h position. For the DynBV problem, the
coefficients vary exponentially, thus the largest coefficient is the
deciding factor for the fitness value. We first compare the fitness in
the n−2l −h positions of x1 and x2, which are the same in the same
generation. The next largest coefficient decides the final fitness
value. Then we say that x1 “wins” if the event E happens. If the next
largest coefficient is in the l +h positions, x1 wins, else in another l
positions, x2 wins. Therefore,

Pr (E) ≥
l + h

2l + h
=
l + h/2 + h/2

2 (l + h/2)
=

1
2

+
h

2(2l + h)

≥
1
2

+
1

2(2l + h)
=

1
2

+
1
2s

since the Hamming-distance s between any pair of individuals is at
most n, then

≥
1
2

+ θ .

The condition (C2) of Theorem 2 holds. Since s ≤ n, we get θ ≥
1/(2n).

To verify condition (C1), we need to estimate the probability of
sampling individuals beyond the current level of the population. We
assume that there is an individual z ∈ Aj where j ∈ [0..n − 1], and

let y be obtained from z by the mutation operator with mutation
rate χ/n. For a lower bound, it suffices to only consider the case
that none of the 1-bits are flipped and one of 0-bits is flipped after
mutation. Then, by Lemma 13 it follows,

Pr(y ∈ A≥j+1 | z ∈ Aj ) >
(
1 −

χ

n

) j χ
n

(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: hj

= Ω
(

(n − j)χ
n

)
.

Then we compute the population size required by condition (C3).
Let ξ ∈ (0, 1/16) be a constant, then

λ >
4 (1 + o(1))
θ2ξ (1 − ζ )4

ln
(

128(m + 1)
θ2ξ (1 − ζ )4 min{hj }

)
= O

(
n2 log(n/χ )

)
.

Condition (C3) is satisfied by λ > cn2 log(n/χ ) for a sufficiently
large constant c .

Finally, all conditions of Theorem 2 hold and the expected time
E[T ] to reach the optimum is no more than

E[T ] ≤
16 (1 + o(1))
θ2ξ (1 − ζ )2

(
λ
m−1∑
j=0

ln
(

6
ξ (1 − ζ )2hj

)
+

1
ξ (1 − ζ )2

m−1∑
j=0

1
hj

)
= O

(
s2

(
λ
m−1∑
j=0

ln
(

n

(n − j)χ

)
+
m−1∑
j=0

n

(n − j)χ

))
= O

(
s2

(
λ ln

(
nn

χnn!

)
+ n log(n)/χ

))
using the bounds n!> (n/e)n , and s ≤ n,

= O
(
s2nλ log(1/χ ) + s2n log(n)/χ

)
= O

(
n3λ log(1/χ ) + n3 log(n)/χ

)
.

□

Although Lengler and Schaller [18] proved that the (1+1) EA
can achieve the optimum in O (n log(n)) with standard mutation
rate χ/n = 1/n on the noisy linear function, there only exists a
partial result for population-based EAs, i.e., runtime when the pop-
ulation is initiated close to the optimum [16]. Theorem 9 gives for
the first time the runtime from any start point on DynBV for a
population-based EA. It implies that if choosing a low mutation
rate, e.g., χ/n = ζ /(2n2) and a population size λ > cn2 log(n) for a
sufficiently large constant c , Algorithm 1 can optimise the DynBV
problem in O

(
n3λ log(n)

)
time. The analysis could be further im-

proved by estimating the maximal Hamming-distance in all pairs
of individuals more precisely.

6 EXPERIMENTAL RESULTS

In the previous sections, our main result indicates an upper bound
of mutation rate to guarantee polynomial runtime as a function
of the level of uncertainties. However, the current analyses do not
show what happens if the mutation rate goes higher in uncertain
environments. We thus conduct an experiment to complement the
theoretical results. We run Algorithm 1 with different mutation
parameters χ from 0.05 to 1.0 with step 0.05 on LeadingOnes
under different levels of one-bit noise q from 0.0 to 1.0 with step
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Figure 1: Success rate of 100 runs of Algorithm 1 with muta-

tion rate χ/n = χ/200 and population size λ = 30 ln(200) on
LeadingOnes (n = 200) in the one-bit noise model (q) with

a budget of 2003
evaluation times. The black line indicates

an upper bound of mutation parameter χ which leads to an

O(n2) runtime according to noise level q.

0.05. For each pair of χ and q, we run 100 times and record the
frequency of the algorithm finding the optimumwith a budget of n3

fitness evaluations. It is a time-consuming experiment, so we run
the experiments with problem size n = 200 and show the results
by a heat-map (Figure 1). From Theorem 5, we can compute the
maximal value of χ to guarantee O(n2) runtime according to the
level of one-bit noise (the black line in Figure 1). We can see from
Figure 1 that the algorithm can successfully find the optimum in
2003 fitness evaluation if we choose χ below the black line, which
match the theoretical results. If we choose χ a bit higher than the
black line, the algorithm may no longer optimise LeadingOnes in
2003 fitness evaluations.

7 CONCLUSION

In this paper, we improve the results from Dang and Lehre [3] and
extend them to more uncertainty models. We also provide more
precise guidance on how to choose mutation rate and population
size as a function of the level of uncertainties. From Tables 1-6, we
can conclude that by using an appropriate mutation parameter, i.e.,
χ ∈ [θζ , ln(1 + 2θζ )) where ζ ∈ (0, 1) is a arbitrary constant and θ is
a function of the level of uncertainty, and a sufficiently large enough
population size, the non-elitist EA with 2-tournament selection can
guarantee less time to optimise OneMax and the LeadingOnes
under one-bit and extremely high-level bit-wise noise, compared to
(1+1) EA using resampling strategy [21, 22]. In some settings, such
as in the Gaussian noise model, we obtain a lower upper bound
of runtimes than ACO-fp [12], and a comparable upper bound
with EDAs [10, 15]. Finally, we prove for the first time that with
appropriate parameters settings, non-elitist EAs can optimise the
DynBV problem in expected polynomial time.

Future work should investigate what value of mutation rate
is too high for optimisation under uncertainty. Although we can
determine the appropriate mutation rate for a given uncertainty
level, the noise level is often unknown in real-world optimisation.

Thus, another future work would be to investigate the performance
of mutation rate adjusting mechanisms, e.g., self-adaptation [1] and
self-adjusting [6], under uncertainties.
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A USEFUL INEQUALITIES

Lemma 10. ln(1 + x ) <
√
x for 0 ≤ x < ∞.

Proof. By Eq. (14) in [24],

ln(1 + x ) ≤
x

√
1 + x

<
x
√
x

=
√
x .

□

Lemma 11 ([19]).
(
1 + x

n
)n
≥ ex

(
1 − x 2

n

)
for n ∈ N∗,|x |≤ n.

Lemma 12.
(
(1 − x)1/x−1

)y
≥ e−y for 0 < x < 1 and y > 0.

Proof. By Lemma 11,

(1 − x)1/x ≥ e−1 (1 − x) (6)

(1 − x)1/x−1 ≥ e−1 (7)(
(1 − x)1/x−1

)y
≥ e−y (8)

□

Lemma 13.
(
1 − χ

n

)i χ
n ≥ e−χ (1 − o(1)) χn for 0 < χ = O(1),

n ∈ N∗ and 0 ≤ i ≤ n.

Proof.(
1 −

χ

n

)i χ

n
≥

(
1 −

χ

n

)n χ

n

by Lemma 11,

≥ e−χ
(
1 −

χ2

n

)
χ

n
= e−χ (1 − o(1)) χ/n

□

Lemma 14 ([3]). Let F (x) be the cumulative density function of

normal distribution N
(
0,σ 2) , for x > 0 we have

F (x ) > 1 −
1√

xπ
σ
√

2
+ 4

Lemma 15. For any θ ∈ (0, 1/2] and any constant ζ ∈ (0, 1),
θζ < ln(1 + 2θζ ).

Proof. By 2x
2+x ≤ ln(1 + x ) from Eq. 3 in [24], we can get

ln(1 + 2θζ ) ≥
4θζ

2 + 2θζ
=

2θζ
1 + θζ

>
2θζ

2
= θζ .

□

Lemma 16 ([4]). LetX andY be identically distributed independent

random variables with integer support, finite expected value µ and

finite non-zero variance σ 2
, it holds that

Pr(X = Y ) ≥
(
1 − 1/d2)2

2dσ + 1
for any d ≥ 1

B PROOFS

B.1 Proof of Lemma 3

Proof. Let E be the event that f n (x1) > f n (x2) or individual
x1 is selected uniformly from {x1, x2} if f n (x1) = f n (x2), then
Pr(E) = Pr(f n (x1) > f n (x2)) + 1

2 Pr(f n (x1) = f n (x2)). Now we
derive θ in different cases.

(a) To estimate a lower bound for Pr(E) on the OneMax problem
in the one-bit noise model (q), we pessimistically assume that x1 ∈
Aj+1 and x2 ∈ Aj . Thenwe say that x1 “wins” if the event E happens,
and we distinguish four cases:
• Let E00 be the event that there is no noise, and x1 wins, then

Pr(E00) = (1 − q)2.
• Let E01 be the event that there is no noise in x1 and noise in
x2, and x1 wins, then Pr(E01) ≥ (1 − q)q

((
1 − j

n

)
1
2 + j

n

)
=

q(1 − q)
(
j

2n + 1
2

)
.

• Let E10 be the event that there is noise in x1 and no noise in
x2, andx1 wins, then Pr(E10) ≥ q(1−q)

(
j+1
n ·

1
2 +

(
1 − j+1

n

))
=

q(1 − q)
(
−

j
2n −

1
2n + 1

)
.

• Let E11 be the event that there is noise in x1 and x2, and x1
wins. There are two situations leading x1 to win:

(1) The noise flips one of j + 1 1-bits of x1 and one of j 1-bit
of x2.

(2) The noise flips one of n − (j + 1) 0-bits of x1.
Thus,

Pr(E11) ≥ q2
(
j + 1
n
·
j

n
+

(
1 −

j + 1
n

))
=

(
(j + 1)(j − n)

n2 + 1
)
q2

since (j + 1)(j − n) achieves the minimum when j = n/2,

≥

(
3
4
−

1
2n

)
q2.

By combining all four cases above, we can get

Pr(E) ≥ Pr(E00) + Pr(E01) + Pr(E10) + Pr(E11)

≥ (1 − q)2 + q(1 − q)
(
j

2n
+

1
2

)
+ q(1 − q)

(
−

j

2n
−

1
2n

+ 1
)

+
(

3
4
−

1
2n

)
q2

= 1 −
q

2
+
q2

4
−

q

2n
=

1
2

+
1
2
−
q

2

(
1 −

q

2

)
−

q

2n

≥
1
2

+
1
2
−
q

2

(
1 −

q

2

)
−

q

2n0
=

1
2

+ θ

(b) To estimate a lower bound for Pr(E) on the LeadingOnes
problem in the one-bit noise model (q), we pessimistically assume
that x1 ∈ Aj+1 and x2 ∈ Aj . We also pessimistically assume that the
suffix of x1, i.e. the bits after the (j + 2)-th position, is all 0-bits, and
the suffix of x2, i.e. the bits after the (j + 1)-th position, is all 1-bits,
which is the worst case because if the noise flips the (j + 1)-th bit
in x2, then x2 will have the maximal noisy fitness n. We say that
x1 “wins” if the event E happens, then we distinguish four cases to
estimate Pr(E):
• Let E00 be the event that there is no noise, and x1 wins, then

Pr(E00) = (1 − q)2 = q2 − 2q + 1.
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• Let E01 be the event that there is no noise in x1 and noise in
x2, and x1 wins. By the assumption of x2, x1 only fails if noise
flips the only 0-bit in x2. Thus, Pr(E01) ≥ (1−q)·q ·(1 − 1/n) =
− (1 − 1/n)q2 + (1 − 1/n)q.
• Let E10 be the event that there is noise in x1 and no noise
in x2, and x1 wins. Unless any of the first j + 1 1-bits of
x1 is flipped, x1 wins. Therefore, Pr(E10) ≥ q · (1 − q) ·
(1 − (j + 1)/n) = − (1 − (j + 1)/n) · q2 + (1 − (j + 1)/n)q.
• Let E11 be the event that there is noise in x1 and x2, and x1
wins. Because j = n − 2 is a special case, we first estimate the
probability Pr(E11) when j ≤ n − 3. There are four situations
leading x1 to win:

(1) The noise does not flip the first j + 1 1-bits of x1, and does
not flip the 0-bit of x2.

(2) The noise flips the i-th 1-bits of x1 where i ≤ j + 1, and
flips one of the first i − 1 1-bits of x2,

(3) the noise flips the same bit-position in the first j 1-bits of
x1 and x2 (tie and half chance to win).

(4) The noise flips the (j + 1)-th 1-bit of x1, and does not flip
the first j 1-bits of x2 (tie and half chance to win).

Thus,

Pr(E11) ≥ q2
( (

1 −
j + 1
n

) (
1 −

1
n

)
+

j+1∑
i=2

(
i − 1
n
·

1
n

)
+

j

2n2

+
1

2n

(
1 −

j + 1
n

) )
=

(
j2/2 − (n − 3/2) j + (n − 1)(2n − 1)/2

) q2

n2

since 1/2j2 − (n − 3/2)j + (n − 1)(2n − 1)/2 is monotone
decreasing as j increasing when j ≤ n−3/2, Pr(E11) achieves
the minimum if j = n − 3,

≥
1
2

(
1 +

1
n2

)
q2 >

q2

2
.

Then we estimate Pr(E11) in the special case j = n − 2. Since
both x1 and x2 have one 0-bit to the optimum, i.e. x1 has only
one 0-bit in the last position and x2 has only one 0-bit in the
penultimate position, there are five situations to leading x1
to win:

(1) The noise flips the i-th 1-bits of x1 where i ≤ n − 1, and
flips one of the first i − 1 1-bits.

(2) The noise flips the same bit-position in the first n−2 1-bits
of x1 and x2 (tie and half chance to win).

(3) The noise flips the last 0-bits of x1, and does not flip the
0-bit of x2.

(4) The noise flips both the 0-bits of x1 and x2 (tie and half
chance to win).

(5) the noise flips the (n − 1)-th 1-bit of x1, and flips the last
0-bits of x2 (tie and half chance to win).

Thus,

Pr(E11)

≥ q2
(
n−1∑
i=2

(
i − 1
n
·

1
n

)
+
n − 2
2n2 +

1
n

(
1 −

1
n

)
+

1
2n2 +

1
2n2

)
=
q2

2
.

Therefore, we can get Pr(E11) ≥ q2/2 for all j ≤ n − 2.
By combining all four cases above and j ≤ n − 2, we can get

Pr(E) ≥ Pr(E00) + Pr(E01) + Pr(E10) + Pr(E11)

≥ 1 −
j + 2
n

q +
(
j + 2
n
− 1

)
q2 +

q2

2

≥ 1 −
j + 2
n

(1 − q)q − q2 +
q2

2
≥ 1 − (1 − q)q − q2 +

q2

2

= 1 − q +
q2

2
=

1
2

+
1
2
− q(1 −

q

2
) =

1
2

+ θ .

(c) To estimate a lower bound for Pr(E) on the OneMax problem
in the bit-wise noise model (p), we pessimistically assume that
x1 ∈ Aj+1 and x2 ∈ Aj , such that f (x1) = f (x2) + 1, otherwise x1
will always win. There exists at least one bit-position i , such that x1
has a 1-bit in position i andx2 has a 0-bit in position i . The remaining
bits of x1 and x2 have the same number of 1-bits. Therefore, the bits
after noise of x1 and x2 in position i decide the comparison result.
Let x ′1 and x ′2 be two substrings obtained by removing position i
from x1 and x2 respectively. Since each bit is flipped independently,
we know that f n (x ′1), f n (x ′2) ∼ Bin (n − 1 − j,p) + Bin (j, (1 − p))
which are Poisson-binomially distributed random variables with
variance σ 2 = (1 − p)p(n − 1). Then we apply Lemma 16 with
σ =

√
(1 − p)p(n − 1) ≤ √pn and d = 2 to obtain a lower bound for

Pr(f n (x ′1) = f n (x ′2)) ≥
(1 − 1/22)2

2 · 2
√

2pn + 1
≥

9
64
√

2pn + 16
. (9)

By symmetry, we know that Pr(f n (x ′1) > f n (x ′2)) = Pr(f n (x ′1) <
f n (x ′2)). Let a = Pr(f n (x ′1) = f n (x ′2)) and b = Pr (f n (x ′1) > f n (x ′2)),
then we can get a = 1 − 2b. Thus,

Pr(E) = b + a

(
(1 − p)2 + 2 ·

1
2
· p(1 − p)

)
=

1
2
(1 − a) + a · (1 − p) =

1
2

+
(

1
2
− p

)
a

by Eq. (9),

≥
1
2

+
9 (1/2 − p)

64
√

2pn + 16
=

1
2

+ θ .

(d) To estimate a lower bound for Pr(E) on the LeadingOnes
problem in the bit-wise noise model (p), we pessimistically assume
that x1 ∈ Aj+1 and x2 ∈ Aj . We also pessimistically assume that the
suffix of x1, i.e. the bits after the (j + 2)-th position, is all 0-bits, and
the suffix of x2, i.e. the bits after the (j + 1)-th position, is all 1-bits,
which is the worst case since the noise flipping (j + 1)-th bit of x2
to achieve the optimum which leads to incorrect comparison while
the noise only can at most increase 1 fitness for x1. We distinguish
3 cases to estimate Pr(E):
• Let E0 be the event that f n (x1) ≥ j + 1 and f n (x2) ≤ j,
then Pr(E0) = (1 − p)j+1(1 − p) + (1 − p)j+1p

(
1 − (1 − p)j

)
=(

1 − p(1 − p)j
)

(1 − p)j+1.
• Let E1i be the event that f n (x1) = i and f n (x2) ≤ i − 1
for any i ∈ [1, j], then Pr(E1) = ∑j

i=0 Pr(E1i ) = ∑j
i=0 (p(1 −

p)i ·
(
1 − (1 − p)i

)
) = p

(∑j
i=0(1 − p)i −∑j

i=0(1 − p)2i
)
, by
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the sum of a geometric series,

Pr(E1) = p

(
1 − (1 − p)j+1

1 − (1 − p)
−

1 − (1 − p)2(j+1)

1 − (1 − p)2

)
=

1
2
−

p

2(2 − p)
− (1 − p)j+1 +

1
2 − p

(1 − p)2(j+1).

• Let E2i be the event that f n (x1) = i and f n (x2) = i for
any i ∈ [0, j] then x1 is selected uniformly, then Pr(E2) =
1
2
∑j
i=0 Pr(E2i ) = 1

2
∑j
i=0 p

2(1 − p)2i , by the sum of a geomet-

ric series, Pr(E2) = 1
2p

2
(

1−(1−p)2(j+1)

1−(1−p)2

)
= p

2(2−p) −
p

2(2−p) (1 −

p)2(j+1).

By combining all three cases above, we can get

Pr(E) ≥ Pr(E0) + Pr(E1) + Pr(E2)

=
(
1 − p(1 − p)j

)
(1 − p)j+1 +

1
2
−

p

2(2 − p)
− (1 − p)j+1

+
1

2 − p
(1 − p)2(j+1) +

p

2(2 − p)
−

p

2(2 − p)
(1 − p)2(j+1)

=
1
2

+
(1 − p)2(j+1)

2 − p
−

p

2(2 − p)
(1 − p)2(j+1) − p(1 − p)2j+1

=
1
2

+
1
2

(1 − p)2j+2 − p(1 − p)2j+1 =
1
2

+
(

1
2
−

3
2
p

)
(1 − p)2j+1

by
(
(1 − x )1/x−1

)y
≥ e−y (Lemma 12),

≥
1
2

+
(

1
2
−

3
2
p

)
e
−(2j+1) p

1−p >
1
2

+
(

1
2
−

3
2
p

)
e
−2(j+2) p

1−p

by 0 ≤ j ≤ n − 2 and p ∈ [0, 1/3),

≥
1
2

+
(

1
2
−

3
2
p

)
e−3np ≥

1
2

+ θ .

(e) To estimate a lower bound for Pr(E) on the OneMax and
LeadingOnes problem in the Gaussian noise model (σ 2), we pes-
simistically assume that x1 ∈ Aj+1 and x2 ∈ Aj . Let X ∼ N (0, 2σ 2)
be a random variable, then

Pr(E) ≥ Pr(f n (x1) − f n (x2) > 0) = Pr(X > −1) = Pr(X < 1)

by Lemma 14 with x = 1 and standard deviation is
√

2σ ,

> 1 − 1/
√
π/(
√

2
√

2σ ) + 4

=
(
1 −

(
1/

√
π/(2σ ) + 4

)2
)
/
(
1 + 1/

√
π/(2σ ) + 4

)
>

(
π/(2σ ) + 3
π/(2σ ) + 4

)
/

3
2

=
1 + 6σ/π
1 + 8σ/π

·
4
3
·

1
2

=
1
2

+
1

6 + 48σ/π

=
1
2

+ θ .

□

B.2 Proof of Theorem 4

Proof. We apply Theorem 2 to prove Theorem 4. We first par-
tition the search space into levels. We use the partition Aj :=
{x∈{0, 1}n | f (x) = j} for all j ∈ [0..n]. By constants q ∈ [0, 1]

and n0 ∈ [3,∞), we can get 1/12 < θ ≤ 1/2 which satisfies the
assumption in Theorem 2.

By case (a) of Lemma 3, we get Pr(f n (x1) > f n (x2))+ 1
2 Pr(f n (x1) =

f n (x2)) > 1/2 + θ , then the condition (C2) of Theorem 2 holds.
To verify condition (C1), we need to estimate the probability of

sampling individuals beyond the current level of the population. We
assume that there is an individual z ∈ Aj where j ∈ [0..n − 1], and
let y be obtained from z by the mutation operator with mutation
rate χ/n. We only consider the case that all 1-bits is not flipped
and one of 0-bits is flipped after mutation, and then by Lemma 13
following

Pr(y ∈ A≥j+1 | z ∈ Aj ) >
(
1 −

χ

n

) j χ
n

(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: hj ∈ Ω ((n − j)χ/n) .

Then we compute the population size required by condition (C3).
Let ξ ∈ (0, 1/16) be a constant, then

λ >
4 (1 + o(1))
θ2ξ (1 − ζ )4

ln
(

128(m + 1)
θ2ξ (1 − ζ )4 min{hj }

)
= O(log(n/χ )).

Condition (C3) is satisfied by λ ≥ c log(n/χ ) for a sufficiently large
constant c .

Finally, all conditions of Theorem 2 hold and the expected time
to reach the optimum is no more than

E[T ]

≤
16 (1 + o(1))
θ2ξ (1 − ζ )2

(
λ
m−1∑
j=0

ln
(

6
ξ (1 − ζ )2hj

)
+

1
ξ (1 − ζ )2

m−1∑
j=0

1
hj

)
= O

(
λ
m−1∑
j=0

ln
(

n

(n − j)χ

)
+
m−1∑
j=0

n

(n − j)χ

)
= O

(
λ ln

(
m−1∏
j=0

n

(n − j)χ

)
+ n

m−1∑
j=0

1
(n − j)χ

)
= O

(
λ ln

(
nn

n! χn

)
+ n log(n)/χ

)
using the lower bound n!> (n/e)n ,

= O (λn log(1/χ ) + n log(n)/χ ) .

□

B.3 Proof of Theorem 5

Proof. We apply Theorem 2 to prove Theorem 5. We first parti-
tion the search space into levels. We use the partition Aj :={x∈
{0, 1}n | f (x)=j} for all j ∈ [0..n]. By q ∈ [0, 1), we know that
0 < θ ≤ 1

2 which satisfies the assumption in Theorem 2.
By case (b) of Lemma 3, we get Pr(f n (x1) > f n (x2))+ 1

2 Pr(f n (x1) =
f n (x2)) > 1/2 + θ , then the condition (C2) of Theorem 2 holds.

To verify condition (C1), we need to estimate the probability of
sampling individuals beyond the current level of the population. We
assume that there is an individual z ∈ Aj where j ∈ [0..n − 1], and
let y be obtained from z by the mutation operator with mutation
rate χ/n. We only consider the case that the first 0-bit is flipped
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and other bits are not flipped, and then by Lemma 13 following,

Pr(y ∈ A≥j+1 | z ∈ Aj ) ≥
(
1 −

χ

n

)n−1 χ

n
≥ e−χ (1 − o(1))

χ

n
(10)

=: hj = Ω (χ/n) .

Then we compute the population size required by condition (C3).
Let ξ ∈ (0, 1/16) be a constant, then

λ >
4 (1 + o(1))
θ2ξ (1 − ζ )4

ln
(

128(m + 1)
θ2ξ (1 − ζ )4 min{hj }

)
= O (log (n/χ ))

Condition (C3) is satisfied by λ ≥ c log (n/χ ) for a sufficiently large
constant c .

Finally, all conditions of Theorem 2 hold and the expected time
to reach the optimum is no more than

E[T ] <
16 (1 + o(1))
θ2ξ (1 − ζ )2

(
λ
m−1∑
j=0

ln
(

6
ξ (1 − ζ )2hj

)
+

1
ξ (1 − ζ )2

m−1∑
j=0

1
hj

)
= O

(
λ
m−1∑
j=0

ln (n/χ ) +
m−1∑
j=0

n/χ

)
= O

(
nλ log (n/χ ) + n2/χ

)
.

□

B.4 Proof of Theorem 6

Proof. We apply Theorem 2 to prove Theorem 6. We first parti-
tion the search space into levels. We use the partition Aj := {x ∈
{0, 1}n | f (x )=j} for all j ∈ [0..n]. Since p ∈ (0, 1/2) , we know that
0 < θ < 9/32 which satisfies the assumption in Theorem 2.

By case (c) of Lemma 3, we get Pr(f n (x1) > f n (x2))+ 1
2 Pr(f n (x1) =

f n (x2)) > 1/2 + θ , then the condition (C2) of Theorem 2 holds.
To verify condition (C1), we need to estimate the probability of

sampling individuals beyond the current level of the population. We
assume that there is an individual z ∈ Aj where j ∈ [0..n − 1], and
let y be obtained from z by the mutation operator with mutation
rate χ/n. We only consider the case that no 1-bits are flipped and
one of the 0-bits is flipped after mutation:

Pr(y ∈ A≥j+1 | z ∈ Aj ) >
(
1 −

χ

n

) j χ
n

(n − j)

≥

(
1 −

χ

n

)n χ

n
(n − j) ≥ e−χ

(
1 −

χ2

n

)
χ

n
(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: hj = Ω ((n − j)χ/n) .

Then we compute the population size required by condition (C3).
Let ξ ∈ (0, 1/16) be a constant, then

λ >
4 (1 + o(1))
θ2ξ (1 − ζ )4

ln
(

128(m + 1)
θ2ξ (1 − ζ )4 min{hj }

)
= O

(
1
θ2 ln

(
n2

χθ2

))
= O

(
log (n/(χθ ))

θ2

)
= O

(
1 + pn

(1 − 2p)2
log

(
n

(1 − 2p)χ

))
.

Condition (C3) is satisfied by λ ≥ c
1+pn
(1−2p)2

log
(

n
(1−2p)χ

)
for a suffi-

ciently large constant c .
Finally, all conditions of Theorem 2 hold and the expected time

to reach the optimum is no more than

E[T ] ≤
16 (1 + o(1))
θ2ξ (1 − ζ )2

(
λ
m−1∑
j=0

ln
(

6
ξ (1 − ζ )2hj

)
+

1
ξ (1 − ζ )2

m−1∑
j=0

1
hj

)
= O

(
1
θ2

(
λ
m−1∑
j=0

ln
(

n

(n − j)χ

)
+
m−1∑
j=0

n

(n − j)χ

))
= O

(
1
θ2

(
λ ln

(
nn

χn · n!

)
+
n

χ
log(n)

))
using the lower bound n!> (n/e)n ,

= O

(
nλ

θ2 log
(

1
χ

)
+

n

χθ2 log(n)
)

= O

(
n(1 + pn)
(1 − 2p)2

(
λ log

(
1
χ

)
+

log(n)
χ

))
.

□

B.5 Proof of Theorem 7

Proof. We apply Theorem 2 to prove Theorem 7. We first parti-
tion the search space into levels. We use the partition Aj :={ x ∈
{0, 1}n | f (x ) = j} for all j ∈ [0..n]. Since p ∈ [0, 1/3), we know that
0 < θ ≤ 1/2 satisfies the assumption in Theorem 2.

By case (d) of Lemma 3, we get Pr(f n (x1) > f n (x2))+ 1
2 Pr(f n (x1) =

f n (x2)) > 1/2 + θ , then the condition (C2) of Theorem 2 holds.
To verify condition (C1), we need to estimate the probability of

sampling individuals beyond the current level of the population. We
assume that there is an individual z ∈ Aj where j ∈ [0..n − 1], and
let y be obtained from z by the mutation operator with mutation
rate χ/n. We only consider the case that the first 0-bit is flipped
and other bits are not flipped, and then by Lemma 13 following,

Pr(y ∈ A≥j+1 | z ∈ Aj ) ≥
(
1 −

χ

n

)n−1 χ

n
≥ e−χ (1 − o(1))

χ

n
=: hj

= Ω (χ/n) .

Then we compute the population size required by condition (C3).
Let ξ ∈ (0, 1/16) be a constant, then

λ >
4 (1 + o(1))
θ2ξ (1 − ζ )4

ln
(

128(m + 1)
θ2ξ (1 − ζ )4 min{hj }

)
= O

(
log (n/χ )/θ2

)
= O

(
e6np

(1 − 3p)2
log

(
n

χ

))
.

Condition (C3) is satisfied by λ ≥ c e6np

(1−3p)2
log

(
n
χ

)
for a sufficiently

large constant c .
Finally, all conditions of Theorem 2 hold and the expected time

to reach the optimum is no more than

E[T ] <
16 (1 + o(1))
θ2ξ (1 − ζ )2

(
λ
m−1∑
j=0

ln
(

6
ξ (1 − ζ )2hj

)
+

1
ξ (1 − ζ )2

m−1∑
j=0

1
hj

)
= O

(
1
θ2

(
λ
m−1∑
j=0

ln
(
n

χ

)
+
m−1∑
j=0

n

χ

))
= O

(
1
θ2

(
nλ log

(
n

χ

)
+
n2

χ

))
= O

(
nλ log (n/χ )

θ2 +
n2

χθ2

)
= O

(
ne6np

(1 − 3p)2

(
λ log

(
n

χ

)
+
n

χ

))
.
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B.6 Proof of Theorem 8

Proof. We apply Theorem 2 to prove Theorem 8. We first par-
tition the search space into levels. We use the partition Aj := { x
∈ {0, 1}n | f (x) = j } for all j ∈ [0..n]. By σ ∈ poly(n), we can get
0 < θ < 1

6 which satisfies the assumption in Theorem 2.
By case (e) of Lemma 3, we get Pr(f n (x1) > f n (x2))+ 1

2 Pr(f n (x1) =
f n (x2)) > 1/2 + θ , then the condition (C2) of Theorem 2 holds.

To verify condition (C1), we need to estimate the probability of
sampling individuals beyond the current level of the population. We
assume that there is an individual z ∈ Aj where j ∈ [0..n − 1], and
let y be obtained from z by the mutation operator with mutation
rate χ/n. We only consider the case that all 1-bits is not flipped and
one of 0-bits is flipped after mutation for OneMax, and then by
Lemma 13 following,

Pr(y ∈ A≥j+1 | z ∈ Aj ) >
(
1 −

χ

n

) j χ
n

(n − j)

≥ e−χ (1 − o(1)) (n − j)χ/n =: hj
For LeadingOnes, we only consider the case that the first 0-bit
is flipped and other bits are not flipped, and then by Lemma 13
following,

Pr(y ∈ A≥j+1 | z ∈ Aj ) ≥
(
1 −

χ

n

)n−1 χ

n
≥ e−χ (1 − o(1))

χ

n
=: hj .

Then, we get hj ∈ Ω ((n − j)χ/n) and hj ∈ Ω (χ/n) for OneMax
and LeadingOnes respectively.

Then we compute the population size required by condition (C3).
Let ξ ∈ (0, 1/16) be a constant and we know that min{hj } ∈ Ω (χ/n)
for both problems, then

λ >
4 (1 + o(1))
θ2ξ (1 − ζ )4

ln
(

128(m + 1)
θ2ξ (1 − ζ )4 min{hj }

)
= O

(
σ 2 log(n/χ )

)
Condition (C3) is satisfied by λ ≥ cσ 2 log(n/χ ) for a sufficiently
large constant c .

Finally, all conditions of Theorem 2 hold and the expected time
on OneMax to reach the optimum is no more than

E[T ] ≤
16 (1 + o(1))
θ2ξ (1 − ζ )2

(
λ
m−1∑
j=0

ln
(

6
ξ (1 − ζ )2hj

)
+

1
ξ (1 − ζ )2

m−1∑
j=0

1
hj

)
= O

(
σ 2

(
λ
m−1∑
j=0

ln
(

n

(n − j)χ

)
+
m−1∑
j=0

n

(n − j)χ

))
= O

(
σ 2

(
λ ln

(
nn

χnn!

)
+ n log(n)/χ

))
using the lower bound n!> (n/e)n ,

= O
(
σ 2λn log(1/χ ) + σ 2n log(n)/χ

)
,

and on LeadingOnes,

E[T ] = O

(
σ 2

(
λ
m−1∑
j=0

ln (σn) +
m−1∑
j=0

σn

))
= O

(
σ 2λn log(n/χ ) + σ 2n2/χ

)
.

□
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