
Self-adaptive
Parameter Control Mechanisms
in Evolutionary Computation

By

Xiaoyu Qin

A thesis submitted to
the University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences

University of Birmingham
August 2023

© Copyright by XIAOYU QIN, 2023

All Rights Reserved

ABSTRACT

Evolutionary algorithms (EAs) are effective solvers for a variety of discrete black-box op-

timisation problems. However, their performance heavily relies on the proper selection of

algorithmic parameters, such as mutation rate, crossover rate, and selection pressure, which

are often problem- and instance-specific. One promising approach is self-adaptive parameter

control mechanisms, where the parameters are encoded in the individuals and evolved along

with their solutions through variation operators. Although there have been some theoretical

studies demonstrating the efficiency of self-adaptive EAs on certain functions with unknown

structure, the potential benefits of this approach in other scenarios remain unknown. More-

over, there is a great opportunity for creativity in designing elegant self-adaptive EAs.

In this thesis, we first examine the benefits of self-adaptation in noisy optimisation, where

the presence of noise can significantly affect the algorithm performance. We provide a math-

ematical analysis of the runtime of 2-tournament EAs with self-adapting mutation rates

and two other parameter strategies on a theoretical benchmark optimisation problem with

and without symmetric noise. Our results demonstrate that self-adaptation consistently

achieves the lowest runtime compared to using fixed mutation rates. This is confirmed re-

gardless of the presence of noise, through additional experiments with other noise types and

self-adaptation mechanisms. Next, we investigate the performance of self-adaptive EAs on

a natural tracking dynamic optima problem, known as the Dynamic Substring Matching

(DSM) problem. This problem requires the algorithm to track a sequence of structure-

changing optima, and our analysis reveals that mutation-based EAs with a fixed mutation

i

rate have small chance of succeeding, while self-adaptive EAs can track the dynamic optima

with high probability. Finally, we propose a novel self-adaptive EA for single-objective opti-

misation, which incorporates multi-objective optimisation principles to jointly optimise the

fitness and mutation rates. We call this algorithm multi-objective self-adaptive EA (MOSA-

EA). Our runtime analysis shows that the MOSA-EA can efficiently escape the local optima

with unknown sparsity, where fixed mutation rate EAs may become trapped. In an empirical

study on complex combinatorial problems, the MOSA-EA outperforms twelve other algo-

rithms on NK-Landscape and Max-k-Sat problem instances. Overall, this thesis suggests

that the self-adaptation has great potential for controlling parameters in EAs, especially in

challenging optimisation scenarios, such as uncertain optimisation.

ii

ACKNOWLEDGMENTS

I wish to express my profound gratitude to the many individuals who played pivotal roles

throughout my PhD journey.

Foremost, my deepest thanks are due to my supervisor, Prof Per Kristian Lehre. His

unwavering patience, meticulousness, and steadfast sense of duty have been a beacon of in-

spiration. The regular consultations we had, particularly during vital stages of the project,

combined with his comprehensive guidance on my research, significantly fuelled my achieve-

ments. It was under his tutelage that I produced more than nine papers during my PhD

studies, a feat I could not have accomplished without him.

I extend heartfelt thanks to the respected members of my Thesis Group: Dr Rajesh

Chitnis, Prof Ata Kaban, and Prof Jonathan Rowe. During our six intensive thesis group

meetings, their keen insights and invaluable suggestions greatly refined my research and

overall PhD journey. Additionally, I am deeply indebted to the research community in the

field of Evolutionary Computation. Their spirit of collaboration and their robust support

system for emerging researchers like myself were immeasurable. The engaging dialogues and

constructive feedback I received profoundly enriched my research perspective.

A special acknowledgment goes to BlueBear, the high-performance computing facility at

the University of Birmingham. Their generous provision of over 47 years of CPU time was

pivotal for the computational elements of my PhD project. This resource was crucial in

propelling my research forward, and I am profoundly thankful for their support. I’d also like

to express my genuine gratitude to the committed staff of the School of Computer Science.

iii

Their consistent administrative and technical assistance ensured the seamless progression of

my academic endeavours.

I am fortunate to have been encircled by an exceptional group of colleagues and friends.

Their camaraderie, insights, and steadfast support were foundational throughout my PhD.

While I cannot capture the entirety of their contributions here, special mention goes to the

following individuals, alphabetically arranged by surname: Dr Alistair Benford, Mr Xinxing

Cheng, Dr Zitai Chen, Dr Mingjie Chen, Mr Haoxuan Ding, Ms Zixuan Han, Ms Shanshan

He, Dr Mario Alejandro Hevia Fajardo, Mr Xi Jia, Mr Chaoze Liu, Ms Di Liu, Mr Shishen

Lin, Dr Miqing Li, Mr Zimin Liang, Mr Wei Li, Mr Yuhang Qu, Ms Haixi Shan, Mr Hao

Tong, Mr Chenguang Xiao, Ms Xinyue Xue, Mr Xiankun Yan, Dr Jing Zhang, Mr Mo Zhang,

Mr Tianyang Zhang, Ms Sijia Zhou. To everyone, both mentioned and unmentioned, I offer

my heartfelt thanks.

Lastly, and most profoundly, my deepest gratitude goes to my parents, Mr Shuyi Qin

and Prof Huan Song, and to my entire family. Their unending love, encouragement, and

unwavering faith in me have been the bedrock of my academic pursuits.

iv

Contents

Page

1 Introduction 1

1.1 General Introduction . 2

1.2 Research Questions . 8

1.3 Contributions and Outline . 10

1.4 Publications . 14

2 Background 17

2.1 Introduction . 18

2.2 Preliminaries . 18

2.2.1 Evolutionary Algorithms (EAs) . 20

2.2.2 Self-adaptive EAs . 27

2.2.3 Runtime Analysis . 32

2.2.4 Benchmarking Functions . 39

2.2.5 Noise and Dynamic Models . 42

2.3 Related Work . 46

2.3.1 Parameter Settings in EAs . 46

2.3.2 Self-adaptation in EAs . 54

2.3.3 EAs in Uncertain Environments . 60

2.3.4 EAs on Multi-modal Landscapes . 74

v

Contents

3 Fixed Parameter Settings in Uncertain Environments 81

3.1 Introduction . 82

3.2 2-tournament EA in Uncertain Environments 83

3.3 Noisy Optimisation . 98

3.3.1 One-bit Noise Model . 98

3.3.2 Bit-wise Noise Model . 101

3.3.3 Gaussian Noise Model . 105

3.3.4 Symmetric Noise Model . 108

3.4 Dynamic Optimisation . 115

3.5 Conclusion . 119

4 Self-adaptation in Noisy Environments 123

4.1 Introduction . 124

4.2 Algorithms . 126

4.3 Analysed Noise Models . 128

4.4 High/Low Mutation Rates Lead to Failed/Slow Optimisation 130

4.5 Uniformly Mixing Mutation Rates Do Not Help under Noise 131

4.6 Self-adapting Mutation Rates Guarantee Efficiency Under Noise 134

4.7 Experiments . 148

4.7.1 Symmetric Noise . 149

4.7.2 One-bit Noise . 153

4.7.3 Bit-wise Noise . 156

4.8 Conclusion . 158

5 Self-adaptation on Dynamic Optimisation 163

5.1 Introduction . 164

5.2 Dynamic Substring Matching Problem . 165

5.3 Level-based Theorem (Tail Bounds) . 168

vi

Contents

5.4 The Self-adaptive EA on DSM . 176

5.5 Static Mutation-based EAs Get Lost on DSM 185

5.6 Conclusion . 188

6 Self-adaptation in Multi-modal Landscapes 191

6.1 Introduction . 192

6.2 PeakedLOm,k Problems . 195

6.3 Multi-objective Self-adaptive EA . 195

6.3.1 Multi-objective Sorting Partial Order 196

6.3.2 Self-adapting Mutation Rate . 198

6.4 Inefficiency of Fixed Mutation Rate . 200

6.5 Efficiency of MOSA-EA . 204

6.5.1 Partitioning the Search Space into Levels 205

6.5.2 Definitions and Useful Lemmas . 208

6.5.3 Applying the Level-based Theorem 220

6.6 Conclusion . 225

7 Self-adaptation on Complex Combinatorial Optimisation Problems 227

7.1 Introduction . 228

7.2 Parameter Settings in MOSA-EA . 228

7.3 Experimental Settings and Methodology . 230

7.3.1 Parameter Settings in Other Algorithms 230

7.3.2 Theoretical Benchmarking Functions 231

7.3.3 Complex Combinatorial Optimisation Problems 233

7.4 Results and Discussion . 234

7.4.1 Theoretical Benchmarking Functions 234

7.4.2 Complex Combinatorial Optimisation Problems 235

7.5 Conclusion . 240

vii

Contents

8 Conclusion 243

8.1 Summary . 244

8.2 Future Work . 247

A Supplemental Materials 251

A.1 Definitions . 251

A.2 Useful Inequalities and Lemmas . 252

A.3 Useful Theorem . 255

A.4 Statistical Results of Experiments . 256

References 279

viii

List of Figures

1.1 Classification of parameter setting method in EAs (Eiben et al., 1999) 7

4.1 Illustration of the level partition defined in Definition 4.6.1. The notions on

arrows indicate the “upgrading” probabilities for levels in the proof of Theo-

rem 4.6.2. 138

4.2 Runtimes of 2-tournament EAs on LeadingOnes under symmetric noise with

different noise levels (C = 0). 149

4.3 Runtimes of 2-tournament EAs on OneMax under symmetric noise with

different noise levels (C = 0). 150

4.4 The percentage of χhigh

n
individuals and the highest real fitness value per gen-

eration for 2-tour’ EA with SA-2mr under symmetric noise with different noise

levels (C = 0, 30 runs). 151

4.5 Real fitness and mutation parameter of the highest real fitness individual per

generation of 2-tour’ EA with SA under symmetric noise with different noise

levels (C = 0, 30 runs). 152

4.6 Runtimes of 2-tournament EAs on LeadingOnes under one-bit noise with

different noise levels. 153

4.7 Runtimes of 2-tournament EAs on OneMax under one-bit noise with different

noise levels. 154

ix

List of Figures

4.8 The percentage of χhigh

n
individuals and the highest real fitness value per gen-

eration for 2-tour’ EA with SA-2mr under one-bit noise with different noise

levels (30 runs). 155

4.9 Real fitness and mutation parameter of the highest real fitness individual per

generation of 2-tour’ EA with SA under one-bit noise with different noise

levels (30 runs). 156

4.10 Runtimes of 2-tournament EAs on LeadingOnes under bit-wise noise with

different noise levels. 157

4.11 Runtimes of 2-tournament EAs on OneMax under bit-wise noise with differ-

ent noise levels. 158

4.12 The percentage of χhigh

n
individuals and the highest real fitness value per gen-

eration for 2-tour’ EA with SA-2mr under bit-wise noise with different levels

(30 runs). 159

4.13 Real fitness and mutation parameter of the highest real fitness individual per

generation of 2-tour’ EA with SA under bit-wise noise with different noise

levels (30 runs). 160

5.1 A sequence of target substrings in an example of DSMκ,m,ε,k (κ = 110, n = 20,

m = 4), s.t. ℓ1 = 10 and ℓ2 = 14. 167

5.2 Level partitions for three cases in the proof of Lemma 5.4.1. Note that level

A0 is omitted in the subfigures. 177

6.1 Intuition of MOSA-EA . 193

6.2 Illustration of population sorting in (a) fitness first sorting partial order (Def-

inition 2.2.4 (b)) and (b) multi-objective sorting partial order. The points in

the same cell have the same fitness and the same mutation rate. 196

x

List of Figures

6.3 Informal illustration of the level partition on PeakedLOm,k function (Regions

A′, A, Bk are coloured by yellow, blue, grey, respectively; x represents a

bistring with length n) . 206

7.1 Median runtimes of MOSA-EA for given A and pinc on (a) OneMax, (b)

LeadingOnes and (c) Funnel over 100 independent runs (n = 100). 230

7.2 Runtimes of nine algorithms on the (a) OneMax, (b) LeadingOnes, (c)

Funnel (u = 0.5n, v = 0.6n,w = 0.7n) functions over 30 independent

runs. The y-axis in sub-figures (a) and (b) are log-scaled. (1+1) EA, RLS,

(µ, λ) EA, cGA, FastGA, (1 + (λ, λ)) GA, (µ, λ) self-adaptive EA and SA-

(1, λ) EA cannot find the optimum of the Funnel function in 109 fitness

evaluations. 235

7.3 The highest fitness values found in the end of runs in 108 fitness evaluations

on 100 random NK-Landscape instances with different k (n = 100). 236

7.4 The median of the highest fitness values found in every 2 × 104 fitness eval-

uations over 30 independent runs on one random NK-Landscape instance

(k = 20, n = 100). The x-axis is log-scaled. 238

7.5 The medians of the smallest number of unsatisfied clauses found in 108 fitness

evaluations on 100 random Max-k-Sat instances with different total numbers

of clauses m (k = 5, n = 100). 238

7.6 Minimum number of unsatisfied clauses over 2 × 104 fitness evaluations over

30 independent runs on one random Max-k-Sat instance (k = 5, n = 100,

m = 2500). The axis are log-scaled. 239

7.7 The p-values of Wilcoxon rank-sum tests between the algorithms and the

MOSA-EA on 100 random Max-k-Sat instances. The y-axis is log-scaled. . 239

xi

List of Figures

7.8 Minimum number of unsatisfied clauses found in one hour CPU-time on 100

random Max-k-Sat instances with different total number of clausesm (k = 5,

n = 100). 239

7.9 The p-value of Wilcoxon rank-sum test between Open-WBO and the MOSA-

EA on 100 random Max-k-Sat instances. The y-axis is log-scaled. 240

xii

List of Tables

1.1 Publications during the PhD study . 15

2.1 Notation used in this thesis. 19

2.2 Research on self-adaptive parameter control mechanisms in EC 55

2.3 Theoretical results of randomised heuristic algorithms on OneMax in the

one-bit noise model (q) . 64

2.4 Theoretical results of randomised heuristic algorithms on LeadingOnes in

the one-bit noise model (q) . 65

2.5 Theoretical results of randomised heuristic algorithms on OneMax in the

bit-wise noise model (p) . 66

2.6 Theoretical results of randomised heuristic algorithms on LeadingOnes in

the bit-wise noise model (p) . 67

2.7 Theoretical results of randomised heuristic algorithms on OneMax in the

Gaussian noise model (σ2) . 68

2.8 Theoretical results of randomised heuristic algorithms on LeadingOnes in

the Gaussian noise model (σ2) . 69

2.9 Theoretical results of randomised heuristic algorithms on OneMax in the

symmetric noise model (C, q) . 70

2.10 Theoretical results of randomised heuristic algorithms on LeadingOnes in

the symmetric noise model (C, q) . 71

xiii

List of Tables

2.11 Summary of theoretical studies of randomised search heuristics on dynamic

optimisation . 75

4.1 Theoretical results of EAs on LeadingOnes under symmetric noise (C, q)

(C ∈ R, constant 0 < χhigh < ln(2), χlow = a/n, λ = c log(n) where a, c > 0

are constants, pc ∈ o(1) ∩ Ω(1/n) in 2-tour’ EA with SA-2mr) 125

6.1 Theoretical results of EAs on PeakedLOm,k (for some constant c, δ > 0) . . 194

7.1 Parameter settings of algorithms considered in this chapter 232

7.2 Statistical results of experiments on random NK-Landscape problems. The

p-values of each algorithm come from Wilcoxon rank-sum tests between the

algorithm and MOSA-EA. 237

A.1 Statistical results of experiments LeadingOnes without noise. The p-values

of each algorithm come from Wilcoxon rank-sum tests between the algorithm

and 2-tournament EAs with SA-2mr and SA (100 runs). 257

A.2 Statistical results of experiments LeadingOnes under symmetric noise with

noise level q = 0.1. The p-values of each algorithm come from Wilcoxon rank-

sum tests between the algorithm and 2-tournament EAs with SA-2mr and SA

(100 runs). 258

A.3 Statistical results of experiments LeadingOnes under symmetric noise with

noise level q = 0.2. The p-values of each algorithm come from Wilcoxon rank-

sum tests between the algorithm and 2-tournament EAs with SA-2mr and SA

(100 runs). 259

A.4 Statistical results of experiments LeadingOnes under symmetric noise with

noise level q = 0.3. The p-values of each algorithm come from Wilcoxon rank-

sum tests between the algorithm and 2-tournament EAs with SA-2mr and SA

(100 runs). 260

xiv

List of Tables

A.5 Statistical results of experiments OneMax without noise. The p-values of

each algorithm come from Wilcoxon rank-sum tests between the algorithm

and 2-tournament EAs with SA-2mr and SA (100 runs). 261

A.6 Statistical results of experiments OneMax under symmetric noise with noise

level q = 0.2. The p-values of each algorithm come from Wilcoxon rank-sum

tests between the algorithm and 2-tournament EAs with SA-2mr and SA (100

runs). 262

A.7 Statistical results of experiments OneMax under symmetric noise with noise

level q = 0.3. The p-values of each algorithm come from Wilcoxon rank-sum

tests between the algorithm and 2-tournament EAs with SA-2mr and SA (100

runs). 263

A.8 Statistical results of experiments OneMax under symmetric noise with noise

level q = 0.4. The p-values of each algorithm come from Wilcoxon rank-sum

tests between the algorithm and 2-tournament EAs with SA-2mr and SA (100

runs). 264

A.9 Statistical results of experiments LeadingOnes under one-bit noise with

noise level q = 0.4. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 265

A.10 Statistical results of experiments LeadingOnes under one-bit noise with

noise level q = 0.6. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 266

A.11 Statistical results of experiments LeadingOnes under one-bit noise with

noise level q = 0.8. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 267

xv

List of Tables

A.12 Statistical results of experiments OneMax under one-bit noise with noise

level q = 0.85. The p-values of each algorithm come from Wilcoxon rank-sum

tests between the algorithm and 2-tournament EAs with SA-2mr and SA (100

runs). 268

A.13 Statistical results of experiments OneMax under one-bit noise with noise

level q = 0.9. The p-values of each algorithm come from Wilcoxon rank-sum

tests between the algorithm and 2-tournament EAs with SA-2mr and SA (100

runs). 269

A.14 Statistical results of experiments OneMax under one-bit noise with noise

level q = 0.95. The p-values of each algorithm come from Wilcoxon rank-sum

tests between the algorithm and 2-tournament EAs with SA-2mr and SA (100

runs). 270

A.15 Statistical results of experiments LeadingOnes under bit-wise noise with

noise level p = 1.0/n. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 271

A.16 Statistical results of experiments LeadingOnes under bit-wise noise with

noise level p = 0.8/n. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 272

A.17 Statistical results of experiments LeadingOnes under bit-wise noise with

noise level p = 1.2/n. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 273

xvi

List of Tables

A.18 Statistical results of experiments OneMax under bit-wise noise with noise

level p = 5 ln(n)/n. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 274

A.19 Statistical results of experiments OneMax under bit-wise noise with noise

level p = 6 ln(n)/n. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 275

A.20 Statistical results of experiments OneMax under bit-wise noise with noise

level p = 7 ln(n)/n. The p-values of each algorithm come from Wilcoxon

rank-sum tests between the algorithm and 2-tournament EAs with SA-2mr

and SA (100 runs). 276

xvii

Acronyms

ACO Ant Colony Optimisation.

cGA compact Genetic Algorithm.

EA Evolutionary Algorithm.

EC Evolutionary Computation.

ECAI European Conference on Artificial Intelligence.

EDA Estimation of Distribution Algorithm.

ES Evolutionary Strategy.

FOGA Foundations of Genetic Algorithms.

GA Genetic Algorithm.

GECCO Genetic and Evolutionary Computation Conference.

GP Genetic Programming.

MMAS Max-Min Ant System.

MOSA-EA Multi-objective Self-adaptive EA.

xviii

Acronyms

PPSN Parallel Problem Solving from Nature.

RLS Random Local Search.

RS Random Search.

SAEA Self-adaptive EA.

TSP Traveling Salesman Problem.

UMDA Univariate Marginal Distribution Algorithm.

xix

Chapter One

Introduction

1

Chapter 1. Introduction

1.1 General Introduction

Optimisation is a fundamental task in computer science and operations research. In general,

an optimisation problem can be expressed in terms of a relation P ⊆ I × S, where I

represents the set of problem instances, and S denotes the set of problem solutions. For

any instance z ∈ I, a feasible solution x ∈ S must satisfy (z, x) ∈ P . Given a problem

instance z ∈ I, an optimisation problem is the problem of finding the “best” solution x∗ ∈ S

based on a specific measure among all feasible solutions y ∈ S (Ausiello et al., 1999). This

measure of the “quality” of the solution is typically referred to as the objective function

fz : Sz → R, where the set Sz := {y | y ∈ S ∧ (z, y) ∈ P}, known as the search space,

consists of all feasible solutions, referred to as search points. The solution x∗ of the problem

instance z, called the optimal solution∗, is the one where fz(x∗) ≥ fz(x) for all x ∈ Sz.

We have constrained optimisation if there exists infeasible solutions. For certain problem

instances, identifying feasible solutions may be difficult. This thesis considers unconstrained

optimisation. Typically, the search space of an optimisation problem is comprised of a

sequence of variables, also referred to as dimensions, with each having its own domain. The

size of the problem instance is directly related to the number of these variables. If these

variables are continuous (continuous search space), the optimisation problem is classified

as a continuous optimisation problem; if discrete (discrete search space), it is considered a

discrete or combinatorial optimisation problem (Papadimitriou and Steiglitz, 1998). Both

types of optimisation problems are essential in various fields, such as science (Pintér, 2006),

engineering (Gen and Cheng, 1999), and economics (Intriligator, 2002).

For numerous optimisation problems, finding an optimal solution efficiently can be chal-

lenging, as they are often NP-hard (Fogel, 2000). For example, the optimisation version of

the traveling salesman problem (TSP) is a well-known NP-hard problem, which aims to find

∗In this thesis, we assume that the objective is to maximise the objective function.

2

1.1. General Introduction

the path with smallest weight among all paths that visits each city exactly once and returns

to the origin, of a weighted graph. To narrow down the research scope, the thesis focus

on optimising pseudo-Boolean functions where search spaces are binary {0, 1}n (Boros and

Hammer, 2002), as formally described in Section 2.2. The choice of pseudo-Boolean func-

tions in this thesis is motivated by their role as objective functions in many combinatorial

optimisation problems, coupled with the extensive research available on their optimisation.

Another reason is that there are almost no previous analysis of self-adaptation, it makes sense

to initiate the analysis in the best-studied search domain within the theory of evolutionary

algorithms, which is pseudo-Boolean optimisation.

Uncertainty can further complicate the optimisation task, as it refers to the presence of

unknown factors that influence objective functions, leading to variations in the mapping

from a search point to the objective value during optimisation. There are various types of

uncertainties in the context of optimisation, such as noise and dynamic optimisation (Jin

and Branke, 2005). In the case of noise, the objective values of a search point are random

variables, while in the case of dynamic optimisation, the objective function changes over

time. For instance, in the TSP, noise could preclude obtaining the precise total weight of

a path, while dynamics could cause the weights of edges to change as a function of time.

Uncertainty models are introduced and discussed in Sections 2.2.5 and 2.3.3, respectively.

Furthermore, objective functions may contain local optima which can pose challenges for

algorithms. A given local optimum, denoted by x̄, is considered “better” than other “nearby”

search points, such that f(x̄) ≥ f(x) for all x ∈ Nk(x̄), where Nk(x̄) represents the set of

“neighbouring” search point x. Despite this, x̄ could still be “worse” than the optimal solution

x∗, as f(x̄) < f(x∗). It is important to note that the definition of “neighbours” of a search

point may vary among problem instances and algorithms. Further details can be found in

Section 2.3.4. The term landscape is used to characterise the solutions and their respective

fitness values of an objective function (Jones, 1995). When multiple local optima are present,

3

Chapter 1. Introduction

the objective function is deemed a multi-modal landscape. Specifically, when there is only

one local optimum, it is referred to as a bi-modal objective function. The challenge in many

optimisation problems is that the objective function has many local optima, but the goal is

to find the global optimum x∗, the best overall solution, not just the best nearby solution.

Many optimisation problems are captured by the black-box scenario, where the internal

structure or specific details of the problem instance are not known to the algorithm, and

only the input-output relationship can be evaluated (Droste et al., 2006). The black-box

optimisation problem is formally described as follows. Let S be a finite set (search space)

and xt be the search point in S at the t-th evaluation, where t ∈ N. Let F be a class of

functions F ⊆ {f : S → R}. The objective of black-box optimisation algorithms, such as EAs,

is to identify the optimal solution x∗ ∈ S for the objective function f , such that for all search

points x ∈ S, f (x∗) ≥ f(x). They use the information (x1, f(x1)), . . . , (xt, f(xt)) observed

at each time t ∈ N, where the search point xt they queried is based on observations from the

t − 1 previous search points. Note that f belongs to a class of functions F . The algorithm

has no prior knowledge of the objective function f of the problem instance, but can make

use of the knowledge of the problem class F and obtain information about it by evaluating

search points (retrieving objective values of search points) within the search space (Droste

et al., 2006). Additionally, we introduce a related concept in black-box scenario, termed as

black-box complexity (Droste et al., 2006). This measure signifies the difficulty of solving

a black-box optimisation problem using black-box optimisation algorithms. The black-box

complexity is the minimum worst-case of the number of queries required to identify the

optimum of any black-box algorithm on class F .

Evolutionary algorithms (EAs) are a type of randomised heuristic algorithms that are

widely used in black-box optimisation aiming to identify good solutions, although not nec-

essarily optimal ones. They are inspired by Darwinian evolution (Darwin, 1859), which

involves selection and variation. The concept of selection posits that individuals who are

4

1.1. General Introduction

better adapted to the environment within a population have a higher chance of producing

offspring. New traits appear in populations through random variations in the genomes of

individuals, such as mutation and recombination, ultimately contributing to the creation of

fitter individuals and driving the evolution of the population. EAs simulate natural evolu-

tion with these two key processes. EAs maintain a population of individuals. The number

of individuals in a population is referred to as the population size. Each individual specifies

the genome, i.e., the genotype of the individual, and represents a search point of the problem

instance z, i.e., the phenotype of the individual. Typically, EAs possess a mapping from

the genotype to the phenotype of an individual, denoted as ϕ : Qz → Sz, where Qz is a set

containing all possible genotypes for the problem instance z, and Sz is the search space of the

problem instance z. The fitness value of an individual is determined by the objective value of

the search point represented by the individual x, i.e., f(ϕ(x)). Random variation acts on the

genotype of the individual. In one generation, the term parent denotes the chosen individual,

while offspring refers to the varied individual derived from the parent. The sets of parents

and offsprings are referred to as the parent population and offspring population, respectively.

In order to optimise an objective function, often referred to as the fitness function, EAs

execute the following steps (Bäck et al., 1997):

1. Initialisation: Create a initial population (parent population).

2. Variation: Produce an offspring population by introducing variations in individuals

from the parent population.

3. Selection: Choose individuals from the parent and offspring populations to establish

a new parent population. This selection is based on fitness values of individuals in

populations and utilises various selection mechanisms.

4. Repeat steps 2-3 until the optimal solution is found or the stopping criterion is met.

5

Chapter 1. Introduction

A generation of EAs refers to one repetition of steps 2-3. The field that investigates EAs

and other bio-inspired randomised heuristic algorithms is known as evolutionary computa-

tion (EC). The history of EC dates back to the 1950s, marked by numerous independent

contributions (Fogel, 1998). For a comprehensive review of the early work in this field, we

recommend the survey by Fogel (1998). In the field of EC, there are numerous algorithms.

Some EAs include: evolution strategies (ESs), developed by Rechenberg (1978) and Schwefel

(1981); genetic algorithms (GAs), introduced by Holland (1975) and further studied by De

Jong (1975); genetic programmings (GPs) as presented by Koza (1989). More details about

EAs can be found in Section 2.2.1.

In contrast to many other optimisation methods, EAs typically only assume black-box

access, while mathematical optimisation methods often require a closed-form description of

the objective function, such as in linear programming (Vanderbei, 2020) or mixed-integer

programming (Achterberg and Wunderling, 2013). Furthermore, many optimisation meth-

ods are designed for specific problems, e.g., interior point methods for convex optimisation

(Renegar, 2001). Gradient descent represents a popular class of optimisation algorithms in

machine learning, can be effective when the objective function is smooth and possesses a

well-defined gradient. Nevertheless, it is inapplicable when no gradient is available, as in

discrete search spaces (Ruder, 2017). In contrast, EAs do not require a gradient, they are

so-called gradient-free methods.

When evaluating the performance of an EA, we want to understand the amount of com-

putational resources. Specifically, following the standard approach in computer science, we

want to understand the relationship between the problem size and the time to find desired

solutions (usually an optimal solution) to a given problem instance by the algorithm. In

general, runtime is the number of primitive operations performed before the algorithm ter-

minates. In term of EAs, the computational resources needed on fitness function evaluations

is often much greater than that on the rest of operations of the algorithm in each generation

6

1.1. General Introduction

(Jansen, 2013). As such, the runtime of an EA on a problem instance is usually defined in

terms of the number of objective function evaluations required to find the optimal solution

for the first time. A formal definition of runtime can be found in Section 2.2.3.
<latexit sha1_base64="ygWmjHksjqgp7c4VVWReIuMHv/8=">AAACA3icbVDJSgNBEO2JW4xb1JteGoPgKcyI2zHoxWNEs0ASQk+nJmnS0zN014hhCHjxV7x4UMSrP+HNv7GzHDTxQcHjvSqq6vmxFAZd99vJLCwuLa9kV3Nr6xubW/ntnaqJEs2hwiMZ6brPDEihoIICJdRjDSz0JdT8/tXIr92DNiJSdziIoRWyrhKB4Ayt1M7vNREe0A/SMtMsBARNbwFRqO6wnS+4RXcMOk+8KSmQKcrt/FezE/EkBIVcMmManhtjK2UaBZcwzDUTAzHjfdaFhqXK7jOtdPzDkB5apUODSNtSSMfq74mUhcYMQt92hgx7ZtYbif95jQSDi1YqVJwgKD5ZFCSSYkRHgdCO0MBRDixhXAt7K+U9Gwa3WZicDcGbfXmeVI+L3lnx9OakULqcxpEl++SAHBGPnJMSuSZlUiGcPJJn8krenCfnxXl3PiatGWc6s0v+wPn8AbfUmDk=</latexit>

Parameter Setting

<latexit sha1_base64="wlaPB4thET58qVMynwt8k5Nr64Q=">AAACAnicbVDJSgNBEO2JW4xb1JN4aQyCpzAjbsegF48RskESQk+nJmnS0zN014hhCF78FS8eFPHqV3jzb+wsB018UPB4r4qqen4shUHX/XYyS8srq2vZ9dzG5tb2Tn53r2aiRHOo8khGuuEzA1IoqKJACY1YAwt9CXV/cDP26/egjYhUBYcxtEPWUyIQnKGVOvmDFsID+kFaZpqFgKBpJVFC9UadfMEtuhPQReLNSIHMUO7kv1rdiCchKOSSGdP03BjbKdMouIRRrpUYiBkfsB40LVV2nWmnkxdG9NgqXRpE2pZCOlF/T6QsNGYY+rYzZNg3895Y/M9rJhhctVOh4gRB8emiIJEUIzrOg3aFBo5yaAnjWthbKe/bLLiNwuRsCN78y4ukdlr0Lornd2eF0vUsjiw5JEfkhHjkkpTILSmTKuHkkTyTV/LmPDkvzrvzMW3NOLOZffIHzucP6YuXxg==</latexit>

Parameter Tuning
<latexit sha1_base64="buLbXQt4vs6kUGo4eMbIlKxkMKE=">AAACA3icbVDJSgNBEO1xN26j3vTSGARPYUbcjkEvHiOYBZIQejo12tjTPXTXiGEIePFXvHhQxKs/4c2/sZPMwe1BweO9KqrqRakUFoPg05uanpmdm19YLC0tr6yu+esbDaszw6HOtdSmFTELUiioo0AJrdQASyIJzejmbOQ3b8FYodUlDlLoJuxKiVhwhk7q+VsdhDuM4rzGDEsAwdAzrdBoOez55aASjEH/krAgZVKg1vM/On3NswQUcsmsbYdBit2cGRRcwrDUySykjN+wK2g7qtw+283HPwzprlP6NNbGlUI6Vr9P5CyxdpBErjNheG1/eyPxP6+dYXzSzYVKMwTFJ4viTFLUdBQI7QsDHOXAEcaNcLdSfu3C4C4LW3IhhL9f/ksa+5XwqHJ4cVCunhZxLJBtskP2SEiOSZWckxqpE07uySN5Ji/eg/fkvXpvk9Ypr5jZJD/gvX8BvDCYPA==</latexit>

Parameter Control

<latexit sha1_base64="ppeBx9diZDn9N80SLHH3UerNMvk=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXJUZ8bUs6sJlBfuAtpRMeqcNTTJDkhHL2IW/4saFIm79DXf+jWk7C209EDicc185QcyZNp737eQWFpeWV/KrhbX1jc0td3unpqNEUajSiEeqERANnEmoGmY4NGIFRAQc6sHgauzX70FpFsk7M4yhLUhPspBRYqzUcfdaBh5MEKbXYEAJJu1KRkcdt+iVvAnwPPEzUkQZKh33q9WNaCJAGsqJ1k3fi007JcpO4zAqtBINMaED0oOmpZII0O10cv8IH1qli8NI2ScNnqi/O1IitB6KwFYKYvp61huL/3nNxIQX7ZTJODEg6XRRmHBsIjwOA3eZAmr40BJCFbO3YtonilCbhS7YEPzZL8+T2nHJPyud3p4Uy5dZHHm0jw7QEfLROSqjG1RBVUTRI3pGr+jNeXJenHfnY1qac7KeXfQHzucPCVmWxg==</latexit>

Deterministic
<latexit sha1_base64="XEN8Cp6wU3Udedv6MLkvZ+XmtNc=">AAAB+nicbVC5TsNAEF1zhnA5UNJYREhUkY24ygANZZDIISVWtF6Pk1XWh3bHgcjkU2goQIiWL6Hjb9gkLiDhSSM9vTejmXleIrhC2/42lpZXVtfWCxvFza3tnV2ztNdQcSoZ1FksYtnyqALBI6gjRwGtRAINPQFNb3Az8ZtDkIrH0T2OEnBD2ot4wBlFLXXNUgfhEb0gu/JpgnwI465Ztiv2FNYicXJSJjlqXfOr48csDSFCJqhSbcdO0M2oRM4EjIudVEFC2YD2oK1pRENQbjY9fWwdacW3gljqitCaqr8nMhoqNQo93RlS7Kt5byL+57VTDC7djEdJihCx2aIgFRbG1iQHy+cSGIqRJpRJrm+1WJ9KylCnVdQhOPMvL5LGScU5r5zdnZar13kcBXJADskxccgFqZJbUiN1wsgDeSav5M14Ml6Md+Nj1rpk5DP75A+Mzx/l8JRu</latexit>

Adaptive
<latexit sha1_base64="ikECySZY35lRajimcFPGfgQ9LU8=">AAAB/3icbVDJSgNBEO2JW4zbqODFy2AQvBhmxO0Y9OIxolkgGUJPT03SpGehuyYYxhz8FS8eFPHqb3jzb+wsB018UPB4r4qqel4iuELb/jZyC4tLyyv51cLa+sbmlrm9U1NxKhlUWSxi2fCoAsEjqCJHAY1EAg09AXWvdz3y632QisfRPQ4ScEPaiXjAGUUttc29FsIDekF2ByI4pj5NkPdh2DaLdskew5onzpQUyRSVtvnV8mOWhhAhE1SppmMn6GZUImcChoVWqiChrEc70NQ0oiEoNxvfP7QOteJbQSx1RWiN1d8TGQ2VGoSe7gwpdtWsNxL/85opBpduxqMkRYjYZFGQCgtjaxSG5XMJDMVAE8ok17darEslZagjK+gQnNmX50ntpOScl85uT4vlq2kcebJPDsgRccgFKZMbUiFVwsgjeSav5M14Ml6Md+Nj0pozpjO75A+Mzx+O55Z3</latexit>

Self-adaptive

<latexit sha1_base64="7lm+GkOG9FDaDM5I4/YUK5xnpp8=">AAACDHicdVDLSgMxFM3UV62vqks3wSK4KjO21c6u6MadFewD2lIyaaYNZjJDckcsQz/Ajb/ixoUibv0Ad/6NmbaCih4InJx77k3u8SLBNdj2h5VZWFxaXsmu5tbWNza38ts7TR3GirIGDUWo2h7RTHDJGsBBsHakGAk8wVre9Vlab90wpXkor2AcsV5AhpL7nBIwUj9f6AK7Bc9PLmQ6Ak+m9ySMgAdcT00T47KLdrnkllxsiF11KxVDXLdaqjjYMUqKApqj3s+/dwchjQMmgQqidcexI+glRAGngk1y3ViziNBrMmQdQyUJmO4l02Um+MAoA+yHyhwJeKp+70hIoPU48IwzIDDSv2up+FetE4Nf7SVcRjEwSWcP+bHAEOI0GTzgilEQY0MIVdz8FdMRUYSCyS9nQvjaFP9PmkdF57hYuSwXaqfzOLJoD+2jQ+SgE1RD56iOGoiiO/SAntCzdW89Wi/W68yaseY9u+gHrLdPOZCdDA==</latexit>

Online optimisation
<latexit sha1_base64="1wvnzPXc22vtY/IM8XSM4ClWh+A=">AAACDXicdVDLSgMxFM3UV62vqks3wSq4KjO2o51d0Y07K9gHtKVk0kwbmnmQ3BHL0B9w46+4caGIW/fu/BszbQUVPRA4nHNuknvcSHAFpvlhZBYWl5ZXsqu5tfWNza389k5DhbGkrE5DEcqWSxQTPGB14CBYK5KM+K5gTXd0nvrNGyYVD4NrGEes65NBwD1OCWiplz/oALsF10suPS+9A0+mQhJGwH2upqlJL18wi2a55JQcrIlZcWxbE8eplGwLW1pJUUBz1Hr5904/pLHPAqCCKNW2zAi6CZHAqWCTXCdWLCJ0RAasrWlAfKa6yXSbCT7USh97odQnADxVv08kxFdq7Ls66RMYqt9eKv7ltWPwKt2EB1EMLKCzh7xYYAhxWg3uc8koiLEmhEqu/4rpkEhCQReY0yV8bYr/J43jonVStK/KherZvI4s2kP76AhZ6BRV0QWqoTqi6A49oCf0bNwbj8aL8TqLZoz5zC76AePtE/qWnXQ=</latexit>

O✏ine optimisation

<latexit sha1_base64="P5TlrbyrM8OauEo3iC/GhDwekAk=">AAACEHicdVDLSgNBEJz1GeMr6tHLYBA9hV1jNHsLCuIxgolCEsLspDcZnH0w0ysJSz7Bi7/ixYMiXj1682+cPAQVLRioruqmp8uLpdBo2x/WzOzc/MJiZim7vLK6tp7b2KzrKFEcajySkbr2mAYpQqihQAnXsQIWeBKuvJvTkX91C0qLKLzEQQytgHVD4QvO0Ejt3F4ToY+en56JPnTocFymMVMsAARFeS8SHPSwncvbBfuw6BZdaohddkslQ1y3XCw51DHKCHkyRbWde292Ip4EECKXTOuGY8fYSplCwSUMs81EQ8z4DetCw9DQ7NOtdHzQkO4apUP9SJkXIh2r3ydSFmg9CDzTGTDs6d/eSPzLayTol1upCOMEIeSTRX4iKUZ0lA7tCAUc5cAQxpUwfzUJmDC4yUJnTQhfl9L/Sf2g4BwVSheH+crJNI4M2SY7ZJ845JhUyDmpkhrh5I48kCfybN1bj9aL9TppnbGmM1vkB6y3T8m8nl4=</latexit>

Fixed parameter choices

<latexit sha1_base64="7E2HKlGf75PsBgElflOQ7te/jjg=">AAACBHicdVC7SgNBFJ31bXytWqYZDIJV2E2MZjvRxjKCUSFZwuzsXR0y+2DmrhiWFDb+io2FIrZ+hJ1/4yRGUNEDA4dz7uXOOUEmhUbHebempmdm5+YXFktLyyura/b6xplOc8WhzVOZqouAaZAigTYKlHCRKWBxIOE86B+N/PNrUFqkySkOMvBjdpmISHCGRurZ5RZTLAYERbsINxhEBSQ8DSGkw55dcarObt2re9QQp+k1GoZ4XrPecKlrlBEqZIJWz37rhinPY0iQS6Z1x3Uy9AumUHAJw1I315Ax3meX0DE0MYe1X4xDDOm2UUIapcq8BOlY/b5RsFjrQRyYyZjhlf7tjcS/vE6OUdMvRJLlaKJ9HopySTGlo0ZoKBRwlANDGFfC/JXyK9MKN6XokinhKyn9n5zVqu5etXFSqxwcTupYIGWyRXaIS/bJATkmLdImnNySe/JInqw768F6tl4+R6esyc4m+QHr9QODGJiv</latexit>

Parameter encoded
<latexit sha1_base64="HrSM31P5YlOJeX5nue8Wc7ux9Vo=">AAAB9HicdVBNS8NAEN3Ur1q/qh69LBbBU0lao82t6MVjBWsLbSib7aRdutnE3U2hlP4OLx4U8eqP8ea/cdNWUNEHA4/3ZpiZFyScKW3bH1ZuZXVtfSO/Wdja3tndK+4f3Kk4lRSaNOaxbAdEAWcCmpppDu1EAokCDq1gdJX5rTFIxWJxqycJ+BEZCBYySrSRfCawHgIegIgj6BVLdtk+q3pVDxti1zzXNcTzalXXwY5RMpTQEo1e8b3bj2kagdCUE6U6jp1of0qkZpTDrNBNFSSEjsgAOoYKEoHyp/OjZ/jEKH0cxtKU0Hiufp+YkkipSRSYzojoofrtZeJfXifVYc2fMpGkGgRdLApTjnWMswRwn0mgmk8MIVQycyumQyIJ1Sanggnh61P8P7mrlJ3zsntTKdUvl3Hk0RE6RqfIQReojq5RAzURRffoAT2hZ2tsPVov1uuiNWctZw7RD1hvn9xbkjE=</latexit>

in the genome

<latexit sha1_base64="1DXhdyxB2m3lz3KCcW2Is7dNI2c=">AAACCHicdVBNS8NAFNz4WetX1aMHF4vgqSTWanMTvXhUsCq0RTabF13cbMLui1hCj178K148KOLVn+DNf+OmraCiAwvDzDzevglSKQy67oczNj4xOTVdminPzs0vLFaWlk9NkmkOLZ7IRJ8HzIAUClooUMJ5qoHFgYSz4Pqg8M9uQBuRqBPspdCN2aUSkeAMrXRRWWulIUOgHYRbDKJcZxJMn4aQggppkai6NXe77td9aonb9BsNS3y/WW941LNKgSoZ4eii8t4JE57FoJBLZkzbc1Ps5kyj4BL65U5mIGX8ml1C21LFYjDdfHBIn25YJaRRou1TSAfq94mcxcb04sAmY4ZX5rdXiH957QyjZjcXKs0QFB8uijJJMaFFKzQUGjjKniWMa2H/SvkV04yj7a5sS/i6lP5PTrdq3k6tcbxV3dsf1VEiq2SdbBKP7JI9ckiOSItwckceyBN5du6dR+fFeR1Gx5zRzAr5AeftE5clml8=</latexit>

Update rules depend on
<latexit sha1_base64="/QFgWVeug4Q99R4N81zo/H/U8qA=">AAAB/XicdVDLSgMxFM3UV62v8bFzEyyCqzLTOtrZFd24rGAf0A4lk2ba0MwkJBmhDsVfceNCEbf+hzv/xvQhqOiBCyfn3EvuPaFgVGnH+bByS8srq2v59cLG5tb2jr2711Q8lZg0MGdctkOkCKMJaWiqGWkLSVAcMtIKR5dTv3VLpKI8udFjQYIYDRIaUYy0kXr2AReaxlTNnlBIjolSPbvolJzTil/xoSFO1fc8Q3y/WvFc6BpliiJYoN6z37t9jtOYJBozpFTHdYQOMiQ1xYxMCt1UEYHwCA1Ix9AExUQF2Wz7CTw2Sh9GXJpKNJyp3ycyFCs1jkPTGSM9VL+9qfiX10l1VA0ymohUkwTPP4pSBjWH0yhgn0qCNRsbgrCkZleIh0girE1gBRPC16Xwf9Isl9yzknddLtYuFnHkwSE4AifABeegBq5AHTQABnfgATyBZ+veerRerNd5a85azOyDH7DePgG7F5YU</latexit>

optimisation process

<latexit sha1_base64="f82WzjsHREKq8B5wrZE4t7ZlCtA=">AAACAnicdVBNSwMxEM36bf2qehIvwSJ4Krut1e5N9OJJFGwV2lKy6awNzW6WZFYsS/HiX/HiQRGv/gpv/htTW0FFHww83ptJZl6QSGHQdd+dicmp6ZnZufncwuLS8kp+da1uVKo51LiSSl8GzIAUMdRQoITLRAOLAgkXQe9o6F9cgzZCxefYT6AVsatYhIIztFI7v9FEuMEgzE4UDQE6AeM9Ogi1itr5glt0d8t+2aeWuFW/UrHE96vlikc9qwxRIGOctvNvzY7iaQQxcsmMaXhugq2MaRRcwiDXTA0k9nl2BQ1LYxaBaWWfJwzotlU6NFTaVoz0U/0+kbHImH4U2M6IYdf89obiX14jxbDaykScpAgxH30UppKiosM8aEdo4Cj7ljCuhd2V8i7TjKNNLWdD+LqU/k/qpaK3V6yclQoHh+M45sgm2SI7xCP75IAck1NSI5zcknvySJ6cO+fBeXZeRq0TznhmnfyA8/oB1SqXvg==</latexit>

No feedback from

<latexit sha1_base64="ERmU644RCNrFqw80f1KSuF3m2/w=">AAACEnicdZA9SwNBEIb34nf8ilraLAZBm3BnEs11ohaWCkaF5Ah7mzmzZO+D3TkxHPcbbPwrNhaK2FrZ+W/cxAgq+sLCyzMzzM7rJ1JotO13qzAxOTU9MztXnF9YXFouraye6zhVHJo8lrG69JkGKSJookAJl4kCFvoSLvz+4bB+cQ1Kizg6w0ECXsiuIhEIztCgTmm7jXCDfpAdDSIWCk7zEcgSplgICIryXiw46LxTKtsVu1Z1qy41xm649boxrtuo1h3qGDJUmYx10im9tbsxT0OIkEumdcuxE/QyplBwCXmxnWpIGO+zK2gZa9aD9rLRSTndNKRLg1iZFyEd0e8TGQu1HoS+6QwZ9vTv2hD+VWulGDS8TERJihDxz0VBKinGdJgP7QoFHOXAGMaVMH81CZgwuMlCF00IX5fS/835TsXZrdRPa+X9g3Ecs2SdbJAt4pA9sk+OyQlpEk5uyT15JE/WnfVgPVsvn60FazyzRn7Iev0AeCOfRw==</latexit>

Dynamic parameter choices

<latexit sha1_base64="/QFgWVeug4Q99R4N81zo/H/U8qA=">AAAB/XicdVDLSgMxFM3UV62v8bFzEyyCqzLTOtrZFd24rGAf0A4lk2ba0MwkJBmhDsVfceNCEbf+hzv/xvQhqOiBCyfn3EvuPaFgVGnH+bByS8srq2v59cLG5tb2jr2711Q8lZg0MGdctkOkCKMJaWiqGWkLSVAcMtIKR5dTv3VLpKI8udFjQYIYDRIaUYy0kXr2AReaxlTNnlBIjolSPbvolJzTil/xoSFO1fc8Q3y/WvFc6BpliiJYoN6z37t9jtOYJBozpFTHdYQOMiQ1xYxMCt1UEYHwCA1Ix9AExUQF2Wz7CTw2Sh9GXJpKNJyp3ycyFCs1jkPTGSM9VL+9qfiX10l1VA0ymohUkwTPP4pSBjWH0yhgn0qCNRsbgrCkZleIh0girE1gBRPC16Xwf9Isl9yzknddLtYuFnHkwSE4AifABeegBq5AHTQABnfgATyBZ+veerRerNd5a85azOyDH7DePgG7F5YU</latexit>

optimisation process

Figure 1.1: Classification of parameter setting method in EAs (Eiben et al., 1999)

The performance of EAs is significantly dependent on algorithm parameter settings which

can determine the behaviour of an algorithm, such as parameters controlling the strength

of mutation, the probability of recombination, and the population size (Lobo et al., 2007).

Section 2.2.1 presents some classical EAs and their parameters. Proper parameter settings

can lead to reduced runtime of the EA on the objective function. These settings are often

instance-specific (Lobo et al., 2007), meaning the proper parameter setting for one prob-

lem instance may differ considerably from the settings needed for another problem instance.

Given our interest in reducing the runtime of an algorithm across various problem instances,

it is crucial to configure the parameters appropriately. To configure parameters appropri-

ately, a large number of parameter setting techniques have been developed. A popular

taxonomy proposed by Eiben et al. (1999) (see Figure 1.1) categorises these techniques into

two main classes, parameter tuning and parameter control, depending on whether parame-

ters are static, i.e., the parameter setting do not change during runtime. A common method

for parameter tuning involves conducting initial tests on a set of benchmark problems, and

selecting the most promising static parameter setting based on a statistical analysis of the

test outcomes. Dynamically adapting parameters during the optimisation process is called

7

Chapter 1. Introduction

parameter control. There are different mechanisms for parameter control, including deter-

ministic, adaptive, and self-adaptive mechanisms (Eiben et al., 1999). One promising ap-

proach to configuring parameters is self-adaptive parameter control mechanism (Bäck, 1992;

Schwefel, 1981), where both the solution and the parameters are encoded within genomes

of individuals and evolve together through variation operators, so that the genotype of each

individual not only determines a search point (phenotype) but also its own parameters. The

hypothesis is that an individual with an appropriate parameter setting has greater poten-

tial to improve its fitness value, thus creating an indirect selective bias towards individuals

with better parameter settings. We refer to an EA using the self-adaptive parameter control

mechanism as a self-adaptive EA, with its example implementation shown in Section 2.2.2.

Detailed background information about parameter settings and self-adaptive parameter con-

trol can be found in Sections 2.3.1 and 2.3.2. Although numerous theoretical and empirical

studies exist on self-adaptive parameter control mechanisms, the benefits of these mecha-

nisms in EAs remain uncertain in various optimisation scenarios, including those involving

noisy and dynamic functions, as well as multi-modal functions.

1.2 Research Questions

This thesis aims to understand self-adaptive parameter control mechanisms in EAs through

theoretical analysis and subsequently improve self-adaptive EAs. This thesis addresses four

research questions related to self-adaptive parameter control mechanisms in EC. These ques-

tions will be investigated through rigorous mathematical proofs and supplemental experi-

mental analyses.

Research Question 1: Is it possible for self-adaptive parameter control mechanisms to

determine the “good” parameter setting relative to noise?

8

1.2. Research Questions

In the subsequent discussion detailed in Section 2.3.3.1, the robustness of static EAs relies

on “right” parameter settings that are associated with the presence and intensity of noise.

In a black-box scenario, both the type of noise and the level of noise remain unidentified

for the algorithms. Consequently, the primary research question emerges: Can self-adaptive

EAs determine the “right” parameter settings, thereby facilitating rapid optimisation under

noise?

Research Question 2: Can self-adaptive parameter control mechanisms adapt parameter

settings in dynamic optimisations?

In dynamic optimisation scenarios, the “good” parameter settings may vary over time, po-

tentially leading to unsuccessful optimisations for static EAs. For additional information

about dynamic optimisation, please refer to Section 2.3.3.2. Self-adaptation controls param-

eters during the optimisation process. Thus, the subsequent research question arises: Can

self-adaptive parameter control mechanisms facilitate the adaptation of parameter settings

while optimising dynamic functions?

Research Question 3: Can self-adaptive parameter control mechanisms assist in escaping

from local optima?

Referencing our discussion in Section 2.3.4, there is evidence suggesting that “right” pa-

rameter settings are crucial for escaping from local optima in optimisation. Thus, the third

research question is posed: Can self-adaptive parameter control mechanisms facilitate escape

from local optima?

Research Question 4: Are self-adaptive EAs efficient in addressing complex combinatorial

optimisation problems?

Referring to Section 2.3.2, although a few empirical studies suggest that self-adaptive EAs

can effectively solve complex combinatorial optimisation problems, a comprehensive em-

9

Chapter 1. Introduction

pirical study is still lacking. It would be intriguing to understand potential benefits of

self-adaptation in more complicated optimisation problems, rather than solely on theoretical

benchmarking functions. Therefore, the final research question arises: Can EAs with self-

adaptive parameter control mechanisms significantly enhance the optimisation of complex

combinatorial problems?

1.3 Contributions and Outline

This thesis contributes to the understanding of self-adaptive parameter control mechanisms

in EAs primarily through rigorous mathematical proofs, complemented by experiments.

Firstly, we delve into the significance of appropriate parameter settings for non-elitist EAs

under the influence of uncertainty, which provides a compelling motivation for using self-

adaptation to configure suitable parameter settings. Secondly, we undertake theoretical

and empirical analyses of self-adaptive EA in noisy environments. Thirdly, we explore the

potential of self-adaptation in dynamic optimisation, providing theoretical evidence of its

capability to enhance the performance of EAs. Fourthly, we propose a novel self-adaptive

EA from a multi-objective optimisation perspective, called the multi-objective self-adaptive

EA (MOSA-EA) and prove that it efficiently escapes a local optimum on a bi-model function.

Finally, we conduct an extensive empirical analysis of the MOSA-EA, showcasing its superior

performance in complex combinatorial optimisation problems. As an ancillary discovery, we

propose a variant of the level-based theorem, providing a lower bound for the probability

of finding the current optimum by algorithm within a specified evaluation budget. Each

chapter is the result of collaborative work with Lehre, and the associated publication for

every chapter is mentioned at the beginning of the respective chapter. We now provide an

overview of all the subsequent chapters.

10

1.3. Contributions and Outline

In Chapter 2, we provide the necessary background for the studies conducted in this

thesis. We introduce essential notations, algorithms, analysis tools, benchmark functions,

and uncertainty models. Additionally, we present related work pertaining to the theme of this

thesis, encompassing parameter settings in EAs, self-adaptive parameter control mechanisms,

and pertinent results of EAs optimising under uncertainty and on multi-modal functions.

In Chapter 3, we analyse the runtime of non-elitist EAs using fixed parameter settings on

two classical benchmark functions, OneMax and LeadingOnes, under one-bit, bitwise,

Gaussian, and symmetric noise models, as well as a dynamic optimisation problem DBV

(see Sections 2.2.1, 2.2.4, and 2.2.5 for definitions of algorithms, benchmarking functions,

noise models, and the dynamic optimisation problem, respectively). Our analyses are more

comprehensive and precise compared to the previous study on non-elitist EAs by Dang and

Lehre (2015). We demonstrate that, in several scenarios, the non-elitist EAs outperform the

current state-of-the-art results. Furthermore, we provide more precise guidance on how to

choose the mutation rate, the selective pressure, and the population size as a function of

the level of uncertainty. One of the significant conclusions derived from this chapter is that

appropriate parameter settings for non-elitist EAs under the influence of noise should be

adjusted in relation to the level of noise. Nonetheless, in real-world optimisation problems,

for instance, in a black-box scenario, the noise level is typically unknown. This provides a

compelling motivation for the application of a self-adaptive parameter control mechanism.

The main contribution of Chapter 4 is the first theoretical analysis of the self-adaptive EA

in a noisy environment. The rigorous runtime analysis on the LeadingOnes problem shows

that the 2-tournament EA with self-adapting from high/low mutation rates can guarantee the

lowest runtime among the fixed high/low mutation rates and the uniformly chosen mutation

rate from high/low rates, regardless of the presence of symmetric noise. In addition, we

extend to more types of noise, one-bit and bit-wise noise, and a self-adaptation mechanism

that adapts the mutation rate from a given interval (0, 1/2] in the empirical study. The

11

Chapter 1. Introduction

experimental results show that self-adaptive EAs can adapt to noise levels and outperform

EAs with fixed mutation rates. In conclusion, we provide both theoretical and empirical

evidence that self-adaptation can enhance the noise-tolerance of EAs, addressing Research

Question 1.

In Chapter 5, we explore whether self-adaptation can be beneficial in dynamic optimisa-

tion. We specifically examine a tracking dynamic optima problem with changing structure

that require adjustable parameter settings. The structure refers to the number of relevant

bits (discussed in Section 2.3.2). This problem requires algorithms to successively find and

hold the solutions that match a sequence of bit-flipping and length-varying target bitstrings

(structure-changing optima) within specified evaluation budgets. We show that EAs with

any fixed mutation rate get lost with constant probability somewhere during tracking this

dynamic optimisation problem, resulting in an exponentially small probability of achieving

the final optimum. Therefore, the variable mutation rates may be necessary to reliably track

the moving optimum. The main contribution is the first rigorous study of self-adaptive

parameter control mechanisms on dynamic optimisation. We demonstrate that the (µ, λ)

self-adaptive EA proposed by Case and Lehre (2020) (described in Section 2.2.2) can track

every optimum in this dynamic optimisation problem and reach the final optimum with an

overwhelmingly high probability. Another significant contribution of this chapter is the in-

troduction of a level-based theorem with tail bounds. Level-based theorems serve as some of

the most important theoretical tools for deriving the runtime of non-elitist population-based

EAs (Corus et al., 2018; Dang et al., 2021b; B. Doerr and Kötzing, 2021), as introduced

in Section 2.2.3.1. However, existing level-based theorems merely provide the expected run-

time. To evaluate the proficiency of a self-adaptive EA in tracking dynamic optima, it is

essential to determine a lower bound for the probability of achieving the current optimum

within a specified evaluation budget. To fulfil these requirements, we develop a new variant

of the level-based theorem. The primary conclusion drawn from this chapter is that self-

12

1.3. Contributions and Outline

adaptation of mutation rates can enhance the performance of EAs in dynamic optimisation,

thereby answering Research Question 2.

In Chapter 6, we propose a novel self-adaptive EAs for single-objective optimisation, the

MOSA-EA. This algorithm approaches parameter control from a multi-objective optimisa-

tion perspective, simultaneously maximising both fitness and mutation rates. Due to the

nature of this approach, individuals in “dense” fitness valleys can survive high mutation

rates, while individuals on “sparse” local optima can only survive with lower mutation rates,

thereby allowing them to co-exist on a non-dominated Pareto front. The concepts of “spar-

sity” and “density” are further elaborated in Section 2.3.4. Runtime analyses demonstrate

that the MOSA-EA efficiently escapes a local optimum of unknown sparsity on a bi-modal

function, unlike certain fixed mutation rate EAs, which can become entrapped. The most

significant contribution of this chapter is the proposal of a new method for self-adapting

parameter settings in EAs. This method has been proven to efficiently escape a particular

type of local optima, thereby addressing Research Question 3.

In Chapter 7, we extend our study of the MOSA-EA through a comprehensive empirical

analysis. Our findings reveal that the MOSA-EA delivers performance comparable to that on

unimodal functions, and significantly surpasses eleven randomised search heuristics on a bi-

modal function with “sparse” local optima. Regarding complex combinatorial optimisation

problems, the MOSA-EA increasingly outperforms other algorithms on more challenging

instances of NK-Landscape and Max-k-Sat optimisation problems. Most notably, the

MOSA-EA outperforms a problem-specific MaxSat solver on several difficult Max-k-Sat

instances. These results suggest that self-adaptation through multi-objectivisation can be

effectively utilised to control parameters in non-elitist EAs. The significance lies in the fact

that self-adaptive EAs demonstrate strong performance not only on theoretical benchmarking

functions but also on complex combinatorial optimisation problems. They show promise in

solving real-world problems, thereby addressing Research Question 4.

13

Chapter 1. Introduction

In Chapter 8, we conclude this thesis by highlighting the most significant findings from

our results and providing an overview of the open questions in the field of self-adaptation.

1.4 Publications

During the PhD study, the author of this dissertation has published his research through

various publications, as enumerated in Table 1.1. Note that, in adherence to the convention

within the field of theoretical computer science, the authorship in publications 1-4 and 6-8

is listed in alphabetical order.

14

1.4. Publications

Table 1.1: Publications during the PhD study

Title Authors Jour./Conf. Status

1. More Precise Runtime Analyses of Non-elitist EAs

in Uncertain Environments.

Lehre, Qin GECCO 2021 Published

2. More Precise Runtime Analyses of Non-elitist Evo-

lutionary Algorithms in Uncertain Environments.

Lehre, Qin Algorithmica Published

3. Self-adaptation via Multi-objectivisation: A Theo-

retical Study

Lehre, Qin GECCO 2022 Published

4. Fast Non-elitist Evolutionary Algorithms with

Power-law Ranking Selection.

Dang, Eremeev,

Lehre, Qin

GECCO 2022 Published

5. Self-adaptation via Multi-objectivisation: An Em-

pirical Study.

Qin, Lehre PPSN 2022 Published

6. Fast Non-elitist Evolutionary Algorithms with

Power-law Ranking Selection

Dang, Eremeev,

Lehre, Qin

Algorithmica Submitted

7. Self-adaptation Can Improve the Noise-tolerance of

Evolutionary Algorithms.

Lehre, Qin FOGA 2023 Published

8. Self-adaptation Can Help Evolutionary Algorithms

Track Dynamic Optima.

Lehre, Qin GECCO 2023 Published

9. Optimizing Chance-Constrained Submodular Prob-

lems with Variable Uncertainties.

Yan, Do, Shi,

Qin, Neumann

ECAI 2023 Published

15

16

Chapter Two

Background

17

Chapter 2. Background

2.1 Introduction

This chapter provides an overview of the thesis background, focusing on preliminaries and

relevant studies related to self-adaptive parameter control mechanisms. The chapter is struc-

tured as follows: Section 2.2 introduces notations, algorithms (Section 2.2.1), runtime anal-

ysis (Section 2.2.3), uncertainty models (Section 2.2.5), and benchmarking functions (Sec-

tion 2.2.4). Section 2.2 primarily focuses on definitions of notations and algorithms, with

further discussion appearing in Section 2.3, which presents related work. This section covers

parameter settings (Section 2.3.1), self-adaptation in EAs (Section 2.3.2), and EAs in uncer-

tain environments and on multi-modal landscapes (Sections 2.3.3 and 2.3.4, respectively).

2.2 Preliminaries

This section introduces the algorithms, runtime analyses, uncertainty models, and bench-

marking functions studied in this thesis. Note that the proposed algorithms, analysis tools,

models, and functions will not be covered in this section. For clarity and convenience, we

first introduce some notations in this thesis. We use N := {1, 2, . . .} to denote positive inte-

gers, N0 := N∪{0} to denote non-negative integers, and define the following sets of integers:

[n] := {i ∈ N | i ≤ n} for n ∈ N, [0..n] := [n] ∪ {0} for n ∈ N, and [a..b] := [b] \ [a − 1]

where a, b ∈ N and a ≤ b − 1. This thesis focuses on the optimisation of pseudo-Boolean

functions f : {0, 1}n → R where n ∈ N is called the problem instance size. The search space

of pseudo-Boolean functions is binary, i.e., {0, 1}n. We call elements of {0, 1}n bitstrings of

length n with bit values x = (x1, . . . , xn). We use 1n and 0n to denote all 1-bit and all 0-bit

bitstrings of length n, respectively. We use x1:m to denote the substring x1:m = (x1, . . . , xm)

for any m ∈ [n]. Table 2.1 presents a summary of notations used in this thesis.

18

2.2. Preliminaries

Table 2.1: Notation used in this thesis.

Notation Definition

Pr(·) Probability

Pr(· | ·) Conditional probability

E[·] Expectation

Unif(A) Uniform distribution over a set A

N (µ, σ2) Normal distribution with mean µ and variance σ2, where µ, σ ∈ R

Bin(n, p) Binomial distribution with n trials and success probability p, where n ∈ N

and p ∈ [0, 1]

ln(·) Natural logarithm

log(·) Logarithm with base 2

|x| Length of a bitstring x ∈ {0, 1}n for n ∈ N

|A| Cardinality of a set A

· ⋄ · Bit-string concatenation

In the analysis of optimisation algorithms, it is often necessary to use metrics that quan-

tify the neighbourhood relationship between two search points within a search space. For

example, we may need to measure how “close” the current solution is to some optimum.

In binary search spaces, the Hamming distance is a widely accepted method for evaluat-

ing the distance between two bitstrings. This concept is also fundamental in constructing

benchmarking functions and is defined as follows.

Definition 2.2.1. Given two bitstrings x, y ∈ {0, 1}n with bit values x = (x1, . . . , xn) and

y = (y1, . . . , yn) for any n ∈ N, then the Hamming distance between x and y is

H(x, y) :=
n∑
i=1

|xi − yi|. (2.1)

We also define the Hamming shell for a bitstring, which includes all bitstrings with a

19

Chapter 2. Background

specified Hamming distance.

Definition 2.2.2. Given a bitstring x ∈ {0, 1}n and k ∈ [n] for any n ∈ N, then the

k-Hamming shell of x are

Nk(x) := {y | H(x, y) = k}, (2.2)

in particular, for the special case k = 1, we use the notation

N(x) :=: N1(x) := {y | H(x, y) = 1}. (2.3)

Chapter 5 examines the dynamic substring matching problem to evaluate whether there

are benefits of self-adaptive parameter control mechanisms. In this context, the algorithms

must identify solutions where the bit value of each bit position aligns with the corresponding

bit value of a changing target substring. To formalise this, we define the match function

between two bitstrings as follows.

Definition 2.2.3. Given two bitstrings x ∈ {0, 1}n and y ∈ {0, 1}ℓ where ℓ ∈ [n] for any

n ∈ N, define the matching function

M(x, y) :=


1 if H(x1:|y|, y) = 0,

0 otherwise.
(2.4)

Additionally, a bitstring x is said to match a substring y if M(x, y) = 1.

2.2.1 Evolutionary Algorithms (EAs)

EAs are inspired by Darwinian evolutionary theory and have been applied to a wide range of

optimisation problems across various fields, including engineering, economics, planning, and

computer science (Chen, 2002; Fleming and Purshouse, 2002; Harman et al., 2012; Slowik

and Kwasnicka, 2020; Tong et al., 2022). As mentioned in Section 1.1, EAs maintain a

20

2.2. Preliminaries

population of individuals. These individuals are subject to random variations and selection

based on a fitness function, which is used to evaluate the quality of each individual, and it

guides the selection mechanism which selects the individuals that will be reproduced to form

a new generation of individuals.

Variation is one of two primary processes of EAs, which typically comprises mutation and

recombination. Mutation involves modifying some portion of the genotype of an individual

to generate a new individual. In contrast, recombination, such as crossover, involves merging

genotypes of two or more individuals to generate a new individual. Using EAs to optimise

pseudo-Boolean functions, genotypes and phenotypes of individuals are typically identical,

represented as bitstrings. The mutation operator for bitstring is commonly described as a

random mapping from bitstrings to bitstrings M : {0, 1}n → Ω→ {0, 1}n, where Ω represents

the underlying sample space. For convenience, we use M(x) to denote the bitstring obtained

from mutating bitstring x, i.e., a random variable. The bit-wise mutation operator is one

of the most widely used mutation operators. It independently flips each bit of a bistring x

with probability χ/n, where χ/n ∈ (0, 1/2]. We refer to the probability χ/n as the mutation

rate and χ as the mutation parameter. We call EAs which use a recombination operator

genetic algorithms (GAs). We direct readers to (Bäck et al., 1997) for a comprehensive

exploration of recombination operators. One of the goals of this thesis is to investigate the

behaviour and performance of self-adaptation. As a starting point for theoretical study,

this thesis focuses on simple EAs that utilise only the mutation operator and self-adapting

mutation rate mechanisms. By studying EAs that rely solely on mutation, we can gain

valuable insights into the essential role of self-adaptation in the evolutionary process and

its impact on the optimisation. We leave the study of self-adaptation involving crossover to

future work.

Selection is the second essential process in EAs. The main purpose of selection mechanisms

is to identify the better solutions in a population, which refers to both individuals with high

21

Chapter 2. Background

fitness values and those with high potential to achieve high fitness values (individuals with

lower fitness values that are, nonetheless, a short Hamming distance from those with high fit-

ness values). There are various selection mechanisms that can be categorised as either elitist

or non-elitist, also known as preservative and extinctive, respectively (Bäck, 1992; Bäck and

Hoffmeister, 1991; Baker, 1989). Elitist selection mechanisms always preserve the best indi-

viduals from the current population for the next generation. In contrast, non-elitist selection

mechanisms do not always copy one or more of the fittest individual from a generation to

the next generation. There exist several comparative theoretical studies between elitism and

non-elitism in EAs (Dang et al., 2021a,b; B. Doerr, 2022; Jagerskupper and Storch, 2007).

Although it may appear counterintuitive to discard the fittest individuals during optimisa-

tion, recent studies have shown that non-elitism can be advantageous in facilitating escape

from local optima (Dang et al., 2021a,b; Dang and Lehre, 2016b). However, careful tuning

of parameters, such as the mutation rate, is crucial (Lehre, 2010). Further discussion about

parameter settings of non-elitist EAs is provided in the rest of this section.

Algorithm 1 (1+1) EA
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Mutation rate χ/n ∈ (0, 1/2].

Require: Initial individual x0 ∈ {0, 1}n.

1: for τ = 0, 1, 2, . . . until termination condition met do

2: Create x′ by independently flipping each bit of xt with probability χ/n.

3: if f(x′) ≥ f(xτ) then

4: Set xτ+1 ← x′.

5: else

6: Set xτ+1 ← xτ .

As demonstrated in the preceding framework in Section 1.1, EAs are typically population-

based. Due to the difficulty of analysing stochastic processes involving multiple individuals,

22

2.2. Preliminaries

the simplest variant of EAs, which contains only one individual, can serve as a starting point

for theoretical analysis (Droste, 2002). The (1+1) EA shown in Algorithm 1 is one of the

most extensively studied elitist algorithms in the theory of EC. It is designed to optimise

pseudo-Boolean functions. This single-individual algorithm begins with the initialisation of

an individual x0 usually sampled uniformly at random from the search space {0, 1}n. In

each generation τ ∈ N0, an offspring x′ is produced by bit-wise mutation of the parent xτ . If

the fitness value of the offspring x′ is equal to or greater than that of the parent xτ , then x′

becomes the new parent xτ+1 in the next generation; otherwise, set the new parent xτ+1 to

xτ . This simple algorithm has only one parameter, the mutation rate, which has a significant

impact on the performance of the algorithm (B. Doerr and C. Doerr, 2020; B. Doerr et al.,

2013; Witt, 2013).

Algorithm 2 (µ+ λ) EA
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population sizes λ, µ ∈ N.

Require: Mutation rate χ/n ∈ (0, 1/2].

Require: Initial population P0 ∈ ({0, 1}n)µ.

1: for τ = 0, 1, 2, . . . until termination condition met do

2: for i = 1, . . . , λ do

3: Set z ← Pτ (k) where k ∼ Unif([µ]).

4: Set P (i)← y,

where y is created by independently flipping each bit of z with probability χ/n.

5: Set P ′ ← Pt ∪ P .

6: Sort P ′ such that f(P ′(1)) ≥ . . . ≥ f(P ′(λ+ µ)).

7: Set Pτ+1 ← (P ′(1), . . . , P ′(µ)).

We can further extend the (1+1) EA to a general version of elitist EAs, such as the

(µ+ λ) EA presented in Algorithm 2, which involves multiple individuals, i.e., a population.

23

Chapter 2. Background

We use P to denote a population and P (i) to denote the i-th individual from population

P ∈ ({0, 1}n)λ, where i ∈ [λ]. The (µ+ λ) EA involves a parent population Pτ ∈ ({0, 1}n)µ

of size µ ∈ N, and an offspring population P ∈ ({0, 1}n)λ of size λ ∈ N. Similar to the

(1+1) EA, each individual of the initial parent population P0 is usually sampled uniformly

at random from the search space {0, 1}n. In each generation τ ∈ N0, each individual of

the offspring population P is produced by selecting a parent uniformly at random with

replacement from the parent population Pτ and applying bit-wise mutation. After fitness

evaluations, the µ best individuals of the parent and the offspring populations Pτ ∪ P form

the next parent population Pτ+1. Some variations of this algorithm include the (µ+1) EA

and the (1+λ) EA, where the offspring population size is specified as µ = 1 and the parent

population size is specified as λ = 1, respectively. The elitist EAs are used as baseline or

comparative algorithms in this thesis.

Algorithm 3 Non-elitist EA (Lehre, 2011)
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population size λ ∈ N.

Require: Selection mechanism Psel : ({0, 1}n)λ → Ω → [λ], where Ω is the underlying

sample space.

Require: Mutation rate χ/n ∈ (0, 1/2].

Require: Initial population P0 ∈ ({0, 1}n)λ.

1: for τ = 0, 1, 2, ... until termination condition met do

2: for i = 1 to λ do

3: Sample Iτ (i) ∼ Psel(Pτ); set z := Pτ (Iτ (i)).

4: Set Pτ+1(i)← y,

where y is created by independently flipping each bit of z with probability χ/n.

Non-elitist EAs differ from elitist EAs in that they replace the entire current parent pop-

ulation with the offspring population, rather than keeping the best individuals. Algorithm 3

24

2.2. Preliminaries

presents a framework for non-elitist EAs. In each generation τ ∈ N0, to create an individual

y for the next population Pτ+1, the algorithm first produces an individual z via a random

mapping from the current population Pτ to a index Psel : ({0, 1}n)λ → Ω → [λ], where Ω

is the underlying sample space. The algorithm then applies a bit-wise mutation operator.

Analogously to the mutation operator, we omit the sample space parameter, and let Psel(P)

refer to the random variable which is the index of selected individual from the population

P . Each individual in the next population Pτ+1 is created independently. The notation

Iτ (i) represents the index of the i-th selected individual in the τ -th generation. There are

numerous selection mechanisms available in the literature, and interested readers may refer

to (D. E. Goldberg and Deb, 1991) for further exploration.

Algorithm 4 k-tournament selection mechanism
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population size λ ∈ N.

Require: Tournament size k ∈ [λ].

Require: Population P ∈ ({0, 1}n)λ.

1: for j = 1 to k do

2: Set Ij ∽ Unif([λ]).

3: Set i← argmaxℓ∈{I1...Ik} f (P (ℓ)).

4: return i.

In Chapter 3, we analyse the performance of non-elitist EAs to demonstrate the impor-

tance of parameter tuning under uncertainty. This analysis involves two commonly used

selection mechanisms: k-tournament selection and (µ, λ) selection. Algorithm 4 presents the

k-tournament selection mechanism, which selects the fittest individual from k uniformly at

random with replacement chosen individuals P (I1), P (I2), . . . , P (Ik) from the population P ,

with tournament size k ∈ [λ] and population size λ ∈ N. For the convenience of later anal-

ysis, we illustrate the special case of k-tournament selection, called 2-tournament selection

25

Chapter 2. Background

Algorithm 5 2-tournament selection mechanism
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population size λ ∈ N.

Require: Population P ∈ ({0, 1}n)µ.

1: Set x1 ← P (I1) where I1 ∽ Unif([λ])

2: Set x2 ← P (I2) where I2 ∽ Unif([λ])

3: if f(x1) ≥ f(x2) then

4: Set i← I1.

5: else

6: Set i← I2.

7: return i.

or binary tournament selection. In this case, only two individuals enter the tournament for

each selection, as shown in Algorithm 4. Algorithm 6 defines the (µ, λ) selection mechanism,

which uniformly at random selects an individual from the µ individuals with the highest

fitness. It is worth noting that in practice, we usually sort population P once in each gen-

eration for convenience. For clarity, we refer to the 2-tournament EA as Algorithm 3 using

Algorithm 5 as the selection mechanism, and the (µ, λ) EA as Algorithm 3 using Algorithm 6

as the selection mechanism.

Algorithm 6 (µ, λ) selection mechanism
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population size λ ∈ N.

Require: Selection parameter µ ∈ N, where λ ≥ µ ≥ 1.

Require: Population P ∈ ({0, 1}n)λ.

1: Sort P such that f(P (1)) ≥ . . . ≥ f(P (λ)).

2: i ∽ Unif([µ]).

3: return i.

26

2.2. Preliminaries

2.2.2 Self-adaptive EAs

Parameter settings play a crucial role in EAs (B. Doerr et al., 2013; Lehre and Yao, 2012;

Lobo et al., 2007). Parameter control aims to dynamically configure algorithm parameters

during optimising. This will be discussed in detail in Section 2.3.1. We say an EA is static

when it uses a fixed parameter setting, meaning the parameter setting remains constant

throughout the entire optimisation process. In contrast, we say an EA is dynamic when

the parameter setting adapts during the process. All the EAs mentioned in Section 2.2.1

are classified as static. Self-adaptation is a promising parameter control mechanism where

genotypes of individuals contain not only the solution but also the parameters, and the

population evolves via variation operators and selection. As a result, each individual in a

self-adaptive population possesses not only its represented solution but also its parameters.

This thesis focuses on the theoretical analysis of self-adaptation, and this section introduces

several previously studied algorithms. To the best of our knowledge, there are only three

papers in the theory of EC that focus on self-adaptive mechanisms, and they all solely

concentrate on self-adapting mutation rates (Case and Lehre, 2020; Dang and Lehre, 2016b;

B. Doerr et al., 2021). The self-adaptive population in these papers can be represented as

P ∈ Yλ, where the state space Y = {0, 1}n × (0, 1/2] represents the binary search space

and the interval of mutation rate. To facilitate the analysis, we define the set of solutions

(phenotypes) of a self-adaptive population P as Q := (xi)i∈[λ], where P = (xi, χi/n)i∈[λ], and

use Q(i) to denote the solution of the i-th individual from self-adaptive population P , where

i ∈ [λ] and λ ∈ N population size. In the rest of this section, we will present self-adaptive

EAs from existing papers. The results and conclusions of these papers will be discussed in

Section 2.3.2.

The aforementioned papers proposed and studied three self-adaptive EAs: the 2-tournament

self-adaptive EA using two mutation rates proposed by Dang and Lehre (2016b), the (µ, λ)

27

Chapter 2. Background

Algorithm 7 Framework of self-adaptive EAs
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population size λ ∈ N.

Require: Sorting partial order ⪰P,f .

Require: Selection mechanism Psel : Yλ → Ω → [λ], where Ω is the underlying sample

space and Y = {0, 1}n × (0, 1/2].

Require: Self-adapting mutation rate strategy Dmut : (0, 1/2] → Ω → (0, 1/2], where Ω is

the underlying sample space.

Require: Initial self-adaptive population P0 ∈ Yλ.

1: for τ = 0, 1, 2, . . . until termination condition met do

2: Sort Pτ such that Pτ (1) ⪰Pτ ,f . . . ⪰Pτ ,f Pτ (λ)

3: for i = 1, . . . , λ do

4: Sample Iτ (i) ∼ Psel(Pτ); set (x, χ/n) := Pτ (Iτ (i)).

5: Sample χ′/n ∼ Dmut(χ/n).

6: Create x′ by independently flipping each bit of x with probability χ′/n.

7: Set Pτ+1(i) := (x′, χ′/n).

self-adaptive EA proposed by Case and Lehre (2020), and the (1, λ) self-adaptive EA pro-

posed by B. Doerr et al. (2021). In any generation τ ∈ N0, these algorithms essentially

sort the self-adaptive population Pτ by fitness function f and mutation rate χ/n utilising a

specific sorting partial order. Despite the importance of fitness values, the parameter values

of individuals are also crucial for self-adaptive EAs. Therefore, the sorting partial order is

used to define the relationship between two individuals in the self-adaptive population. Each

individual in the next population Pτ+1 is then produced via selection and mutation, with the

selection mechanism based on the order of the sorted population. The mutation rate of the

selected individual changes based on the some self-adapting mutation rate strategy, and is

then bit-wisely flipped with the probability of the new mutation rate. To describe these pro-

28

2.2. Preliminaries

cesses, we provide a framework for self-adaptive EAs (Algorithm 7) which covers all studied

self-adaptive EAs in this thesis. The framework presented allows users to customise sev-

eral components, including the sorting partial order ⪰P,f (e.g., Definitions 2.2.4(a)-(c)), the

selection mechanism Psel : Yλ → Ω→ [λ], where Ω is the underlying sample space (e.g., Algo-

rithms 8 and 9), and the self-adapting mutation rate strategy Dmut : (0, 1/2]→ Ω→ (0, 1/2],

where Ω is the underlying sample space (e.g., Algorithm 10). For convenience, we omit the

sample space parameter, and let Psel(P) and Dmut(χ/n) refer to random variables which

is the index in a sorted self-adaptive population P of the selected individual, and the self-

adapted mutation rate, respectively. Similarly to the static non-elitist framework shown in

Algorithm 3, the notation Iτ (i) represents the index of the i-th selected individual in the

τ -th generation.

Algorithm 8 2-tournament selection mechanism (self-adaptive EAs)
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population size λ ∈ N.

Require: Selection parameter µ ∈ N, where λ > µ ≥ 1.

Require: Sorted self-adaptive population Pt ∈ Yλ, where Y = {0, 1}n × (0, 1/2].

1: i1 ∽ Uniform([λ])

2: i2 ∽ Uniform([λ])

3: if i1 ≤ i2 then

4: i← i1.

5: else

6: i← i2.

7: return i.

There are two types of sorting partial orders used in the papers mentioned above. Specifi-

cally, the 2-tournament self-adaptive EA using two mutation rates (Dang and Lehre, 2016b)

uses a fitness-only sorting partial order (Definition 2.2.4(a)), which only sorts the self-

29

Chapter 2. Background

Algorithm 9 (µ, λ) selection mechanism (self-adaptive EAs)
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population size λ ∈ N.

Require: Selection parameter µ ∈ N, where λ > µ ≥ 1.

Require: Sorted self-adaptive population Pt ∈ Yλ, where Y = {0, 1}n × (0, 1/2].

1: i ∽ Uniform([µ])

2: return i.

adaptive population based on their fitness values, without considering their mutation rates.

On the other hand, the (µ, λ) self-adaptive EA (Case and Lehre, 2020) and the (1, λ) self-

adaptive EA (B. Doerr et al., 2021) sort the self-adaptive population by fitness values and

then by mutation rates of individuals. The former prefers higher values for both fitness and

mutation rates, while the latter prefers high fitness values and lower mutation rates, which

are described in Definitions 2.2.4(b) and 2.2.4(c), respectively. The sorting partial orders

defined in Definition 2.2.4 rely solely on fitness and mutation rate. However, the notation

⪰P,f involves the entire population P . This is because, in Chapter 6, we propose a new self-

adaptive EA with a sorting partial order that involves the entire population. For generality,

we use the notation ⪰P,f with P for sorting partial order.

Definition 2.2.4. Consider a self-adaptive population P ∈ Yλ, where Y = {0, 1}n ×

(0, 1/2] and n ∈ N. Let f : {0, 1}n → R be a Pseudo-Boolean function, then for all

(x, χ/n), (x′, χ′/n) ∈ Y,

(a) the fitness-only sorting partial order (Dang and Lehre, 2016b) is defined as

(x, χ/n) ⪰P,f (x′, χ′/n)⇐⇒ f(x) ≥ f (x′) . (2.5)

(b) the fitness-first sorting partial order preferring higher mutation rate (Case and Lehre,

2020) is defined as

(x, χ/n) ⪰P,f (x′, χ′/n)⇐⇒ f(x) > f (x′) ∨ (f(x) = f (x′) ∧ χ ≥ χ′) . (2.6)

30

2.2. Preliminaries

(c) The fitness-first sorting partial order preferring lower mutation rate (B. Doerr et al.,

2021) is defined as

(x, χ/n) ⪰P,f (x′, χ′/n)⇐⇒ f(x) > f (x′) ∨ (f(x) = f (x′) ∧ χ ≤ χ′) . (2.7)

The self-adapting mutation rate strategy is a crucial component of self-adaptive EAs.

In the 2-tournament self-adaptive EA using two mutation rates (Dang and Lehre, 2016b),

only two mutation rates are used, and the self-adapting mutation rate switches to the other

mutation rate with probability pc. In the (µ, λ) self-adaptive EA (Case and Lehre, 2020), the

selected individual inherits an increased mutation parameter Aχ/n with probability pinc, and

a reduced mutation parameter bχ/n otherwise. This self-adapting mutation rate strategy

(shown in Algorithm 10) allows mutation rates to self-adapt from ϵ to 1/2. Here, A > 1,

ϵ ∈ (0, 1/2) and b, pinc ∈ (0, 1) are algorithm parameters. In the (1, λ) self-adaptive EA

(B. Doerr et al., 2021), the new mutation rate χ′/n is sampled uniformly at random from

{χ/(nF), Fχ/n} where F > 1, with a half chance to increase and a half chance to decrease.

Algorithm 10 Self-adapting mutation rate strategy in (Case and Lehre, 2020)
Require: Increasing factor A > 1.

Require: Decreasing factor b > 1.

Require: Minimal mutation rate ϵ ∈ (0, 1/2).

Require: Probability for increasing pinc ∈ (0, 1).

Require: Mutation rate χ/n.

1: χ′/n :=


min(Aχ/n, 1/2) with probability pinc,

max (bχ/n, ϵ) otherwise.
2: return χ′/n.

Overall, the self-adaptive EAs can be instantiated by using the framework of self-adaptive

EAs and customised components. For instance, the (µ, λ) self-adaptive EA proposed by

Case and Lehre (2020) can be represented as Algorithm 7, using the fitness-first sorting

31

Chapter 2. Background

partial order with preferring higher mutation rate (Definition 2.2.4(b)), the (µ, λ) selection

(Algorithm 9), and the self-adapting mutation rate strategy presented in Algorithm 10.

2.2.3 Runtime Analysis

As discussed in Section 1.1, EAs primarily address black-box optimisation problems, and

runtime is a crucial metric for evaluating algorithm performance. The runtime of an EA on

a problem instance is usually defined in terms of the number of objective function evalua-

tions required to find the optimal solution for the first time. Runtime analysis is a popular

theoretical approach for mathematically evaluating the performance of EAs and other ran-

domised heuristic algorithms. Many powerful mathematical techniques for runtime analysis

of EAs have since been developed. We recommend readers consult books authored or edited

by Auger and Doerr (2011), B. Doerr and Neumann (2019), Jansen (2013), Neumann and

Witt (2010), and Zhou et al. (2019) for further investigation into theoretical analysis in EC.

In this section, we will introduce some runtime analysis tools used in this thesis. We first

provide a formal definition of runtime of black-box algorithms in Definition 2.2.5.

Definition 2.2.5 (Runtime (Droste et al., 2006)). The runtime T of black-box optimisation

algorithm A on fitness function f : S → R, where S is a finite search space and xt ∈ S is

the search point at the t-th evaluation for t ∈ N, is

TA,f := min
t∈N
{t | ∀y ∈ S, f(xt) ≥ f(y)} . (2.8)

Compared to deterministic algorithms, EAs and other randomised heuristic algorithms

make some random choices. As a result, it is possible to have two identical runs, but it is

unlikely. Furthermore, they may not produce the same result on a given input if run multiple

times. Therefore, the runtime is a random variable because the algorithm makes random

decisions (e.g., mutation). The fact that two runs can be different is a consequence of the fact

32

2.2. Preliminaries

that the algorithm makes random decisions. Hence, we are usually interested in the expected

runtime E[TA,f]. Asymptotic notations (also known as Bachmann-Landau notations) are

commonly used to classify functions based on their growth rates. Asymptotic notations are

also frequently used in the analysis of EAs to describe the expected runtime as a function

of the problem size (Jansen, 2013). Definition A.1.1 defines asymptotic notations rigorously

which is shown in Appendix A.1. Often, we are more interested in obtaining bounds that

hold with high probability rather than focusing solely on the expected runtime (Auger and

Doerr, 2011). For this purpose, the tail bound on the runtime, sometime referred to as success

probability, is introduced to describe the probability of finding the optimal solution within a

given runtime budget T , e.g., Pr (TA,f < T). This concept is commonly employed to describe

the inefficiency of algorithms in the theory of EC. For example, we say the algorithm fails on

the function if the probability of the runtime of the algorithm on the function being within

ecn (exponential runtime) is at most e−Ω(nε), i.e., Pr (TA,f < ecn) = e−Ω(nε), where c, ε > 0

are constants.

Drift theorems are powerful tools for estimating the expected runtime and tail bound on

the runtime, which are widely used in the theory of EC (B. Doerr and L. A. Goldberg,

2013; B. Doerr et al., 2012; Hajek, 1982; He and Yao, 2004; Oliveto and Witt, 2011). We

recommend readers consult the chapter (Lengler, 2020) in a textbook for a comprehensive

survey of drift analysis. Based on drift theorems, many advanced analysis tools have been

developed. For instance, level-based theorems (Corus et al., 2018; Dang et al., 2021b; B.

Doerr and Kötzing, 2021) are employed to obtain an upper bound on the expected runtime

of non-elitist population-based algorithms, while the negative drift theorem for populations

is applied to determine tail bounds on the runtime of such algorithms. These methods are

presented in Sections 2.2.3.1 and 2.2.3.2, respectively, and are frequently utilised throughout

this thesis. In Chapter 3, we utilise the level-based theorem (Corus et al., 2018) to propose a

general theorem for obtaining the upper bounds of expected runtime for 2-tournament EAs

33

Chapter 2. Background

optimising under uncertainty. We also employ the negative drift theorem for populations

(Lehre, 2010) to identify when non-elitist EAs fail under noise. Moreover, we use level-based

theorems (Corus et al., 2018; Dang et al., 2021b) to derive the upper bounds of expected

runtime for self-adaptive EAs on dynamic and multi-modal optimisation in Chapters 5 and 6.

Additionally, Section 2.2.3.3 introduces a tool for obtaining the lower bound of the expected

runtime of mutation-only EAs as a function of mutation rate. In Chapter 4, we use this tool

to demonstrate that static EAs with low mutation rates can be slow, serving as motivation

for employing self-adaptive mutation rates.

2.2.3.1 Level-based Theorems

The level-based theorems (Corus et al., 2018; Dang et al., 2021b; B. Doerr and Kötzing,

2021) are general tools that provide an upper bound of the runtime of non-elitist algorithms

on a wide variety of optimisation problems (Case and Lehre, 2020; Dang et al., 2021b; Dang

et al., 2019; Lehre and P. T. H. Nguyen, 2021; P. T. H. Nguyen, 2021), which follow the

scheme of Algorithm 11 with a population Pτ ∈ X λ, where X is a finite state space. In this

thesis, we first introduce the level-based theorem proposed by Corus et al. (2018) for runtime

analysis. This theorem is one of the most widely used versions in runtime analysis and is

presented in Theorem 2.2.1. Assume that the search space X is partitioned into ordered

disjoint subsets (called levels) A1, . . . , Am. Let A≥j := ∪mk=jAk be the search points in level

j and higher, and let D be some random mapping from the set of all possible populations

X λ into the space of probability distributions of X , i.e., D : X λ → Ω → X , where Ω is

the underlying sample space. For convenience, we omit the sample space parameter, and

let D(P) refer to the random variable of individual. Given any subset A ⊆ X , we define

|Pτ ∩ A| := |{i | Pτ (i) ∈ A}|, i.e., the number of individuals in Pτ that belong to A. To

estimate an upper bound on the time of existing individuals at the final level Am using

Theorem 2.2.1, three conditions must be satisfied: (G1) requires that the probability of

34

2.2. Preliminaries

level “upgrading”, i.e., sampling an individual in higher levels, is non-zero; (G2) requires the

probability of the number of individuals in higher levels “growing”; (G3) requires a sufficient

population size.

Algorithm 11 Population-based Algorithm (Corus et al., 2018)
Require: Finite state space X .

Require: Population size λ ∈ N.

Require: Map D : X λ → Ω→ X , where the underlying sample space Ω.

Require: Initial population P0 ∈ X λ.

1: for τ = 0, 1, 2, ... until termination condition met do

2: for i = 1 to λ do

3: Sample Pτ+1(i) ∼ D(Pτ).

Theorem 2.2.1 (Level-based theorem (Corus et al., 2018)). Given a partition (A1, . . . , Am)

of X , let T := min{τλ | |Pτ ∩ Am| > 0} be the first point in time that the elements of Am

appear in Pτ of Algorithm 11. If there exist z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1) such that

for any population P ∈ X λ,

(G1) for all j ∈ [m− 1], if |P ∩ A≥j| ≥ γ0λ then

Pr
y∼D(P)

(y ∈ A≥j+1) ≥ zj,

(G2) for all j ∈ [m− 2], and all γ ∈ (0, γ0], if |P ∩ A≥j| ≥ γ0λ and |P ∩ A≥j+1| ≥ γλ then

Pr
y∼D(P)

(y ∈ A≥j+1) ≥ (1 + δ)γ,

(G3) and the population size λ ∈ N satisfies

λ ≥ 4/(γ0δ
2) ln

(
128m/(z∗δ

2)
)
, where z∗ := min {zj} ,

then

E[T] ≤ 8

δ2

m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

35

Chapter 2. Background

To address the issue of “deceptive” regions B that contains individuals with a higher

selection probability but at a lower level, Dang et al. (2021b) proposed a new level-based

theorem (Theorem 2.2.2). Theorem 2.2.2 includes an additional condition (G0) that requires

the probability of producing a “deceptive” individual to decrease if there are many individuals

in the “deceptive” region. Conditions (G1) and (G2) are relaxed to only hold when there

are sufficiently few “deceptive” individuals in the population. The “deceptive” region is a

concept in the study of fitness landscapes, which will be discussed in Section 2.3.4.

Theorem 2.2.2 (New level-based theorem (Dang et al., 2021b)). Given a partition (A1, . . . ,

Am) of X and a subset B ⊂ X , let T := min{τλ | |Pτ ∩ Am| > 0} be the first point in time

that the elements of Am appear in Pt of Algorithm 11. If there exist z1, . . . , zm−1, δ ∈ (0, 1],

and γ0, ψ0 ∈ (0, 1) such that for any population P ∈ X λ,

(G0) for all ψ ∈ [ψ0, 1], if |P ∩B| ≤ ψλ then

Pr
y∼D(P)

(y ∈ B) ≤ (1− δ)ψ,

(G1) for all j ∈ [m− 1], if |P ∩B| ≤ ψ0λ and |P ∩ A≥j| ≥ γ0λ then

Pr
y∼D(P)

(y ∈ A≥j+1) ≥ zj,

(G2) for all j ∈ [m− 2], and all γ ∈ (0, γ0], if |P ∩ A≥j| ≥ γ0λ and |P ∩ A≥j+1| ≥ γλ then

Pr
y∼D(P)

(y ∈ A≥j+1) ≥ (1 + δ)γ,

(G3) and the population size λ ∈ N satisfies

λ ≥ 12/(γ0δ
2) ln

(
300m/(z∗δ

2)
)
, where z∗ := min {zj} ,

then

E[T] ≤ 12λ

δ
+

96

δ2

m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

36

2.2. Preliminaries

The target algorithm of level-based theorems (Algorithm 11) is a general algorithm with a

population size of λ ∈ N. In each generation τ , an individual from the next population Pτ is

independently sampled from a given probability distribution D over the current population

Pτ . This framework can be applied to many algorithms in Section 2.2.1. For instance, if

we assume that the finite state space X of Algorithm 11 is {0, 1}n, then the map D can

represent processes of selection and mutation (Lines 3-4) of Algorithm 3. Similarly, if we

divide the space {0, 1}n × (0, 1/2] of Algorithm 11 into a finite state space as X , then the

map D can also represent Lines 3-7 of Algorithm 7.

2.2.3.2 Negative Drift Theorem for Populations

In the analysis of EAs, apart from the upper bounds of runtime, identifying the situation

when the runtime of algorithms is exponential is another critical aspect. The negative drift

theorem for populations (Lehre, 2010) is applied to obtain exponential tail bounds on the

runtime of population selection-variation algorithms with a finite state space, such as Al-

gorithm 11. In this thesis, it is sufficient to utilise Corollary 2.2.1 (Lehre, 2010), which is

a corollary of the negative drift theorem for populations. This corollary is specific to non-

elitist EAs which can be described in Algorithm 3. Before stating the corollary, we define

the reproductive rate α0 (Lehre, 2010) of the individual Pτ (i) in Algorithms 3 and 7 as the

expected number of times the individual is sampled from Psel(Pτ), i.e., E[Rτ (i) | Pτ], where

Rτ (i) :=
∑λ

j=1 δIτ (j),i for τ ∈ N and i ∈ [λ], where

δa,b =


1 if a = b,

0 if a ̸= b.

37

Chapter 2. Background

It is easy to compute the maximal reproductive rates of the 2-tournament selection and the

(µ,λ) selection (without uncertainty), which are

α0 = λ

((
1

λ

)2

+ 2

(
1− 1

λ

)
λ

)

= 2(1− 1/λ)

≈ 2

if λ→∞, e.g., λ ∈ Ω(log(n)), and

α0 = λ
1

µ

=
λ

µ
,

respectively (Lehre and Yao, 2012). The corollary is then stated in Corollary 2.2.1.

Corollary 2.2.1 ((Lehre, 2010)). The probability that Algorithm 3 with population size

λ = poly(n), mutation rate χ/n and maximal reproductive rate bounded by α0 < eχ − δ, for

a constant δ > 0, optimises any function with a polynomial number of optima within ecn

generations is e−Ω(n), for some constant c > 0.

Based on Corollary 2.2.1, we can determine the tolerance limit of the mutation rate,

which is known as the error threshold (Lehre, 2010; Ochoa, 2006). If the mutation rate

is greater than the error threshold, the probability that the runtime of the non-elitist EA

is exponentially large on any function is close to 1. This threshold value is related to the

reproductive rate of the algorithm. Specifically, the non-elitist EA has an error threshold

when the mutation rate χ/n > ln(α0 − δ), where α0 is the maximal reproductive rate of the

algorithm, and δ > 0 is a constant. For example, the error thresholds of the k-tournament

EA and the (µ, λ) EA are approximately ln(k) and ln(λ/µ), respectively.

38

2.2. Preliminaries

2.2.3.3 Tool to Derive Lower Bounds of Runtime

To justify the use of the self-adaptive parameter setting instead of static one in this thesis,

we would like to determine the “speed limit” of EAs using static mutation rates, that is, a

lower bound for the expected runtime. Algorithm 12 is a framework for EAs that use only

the bit-wise mutation operator. It can be used to represent both elitist and non-elitist EAs,

such as Algorithms 1, 2, and 3. Consequently, Theorem 2.2.3 (Sudholt, 2013) gives the lower

bound on the runtime for such EAs with respect to the mutation rate.

Algorithm 12 Framework of a mutation-based EA (Sudholt, 2013)
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Initial population {x1, . . . xµ}.

1: for t = µ, µ+ 1, µ+ 2, ... until termination condition met do

2: Select a parent x from {x1, . . . , xt} according to t and f(x1), . . . f(xt).

3: Create xt+1 by independently flipping each bit of x with probability χ′/n.

Theorem 2.2.3 ((Sudholt, 2013)). The expected runtime of every mutation-based EA using

mutation rate χ/n on every function with a unique optimum is at least
(

ln(n)−ln(ln(n))−3
χ(1−χ/n)n

)
n,

if 2−n/3/n ≤ χ ≤ 1.

2.2.4 Benchmarking Functions

We first present the simple theoretical functions OneMax and LeadingOnes that not only

serve as well-known pseudo-Boolean benchmarking functions but also serve as the foundation

for constructing more complex functions. In the theoretical analysis of EAs, OneMax and

LeadingOnes functions assume a significant role, often employed to compare the perfor-

mance of algorithms.

39

Chapter 2. Background

Definition 2.2.6. Given a bistring x ∈ {0, 1}n for all n ∈ N, then

OneMax(x) :=: OM(x) :=
n∑
i=1

xi. (2.9)

Definition 2.2.7. Given a bistring x ∈ {0, 1}n for all n ∈ N, then

LeadingOnes(x) :=: LO(x) :=
n∑
i=1

i∏
j=1

xj. (2.10)

We additionally introduce two widely-used bi-modal benchmarking functions, namely

Jumpk and Cliff.

Definition 2.2.8. Given a bistring x ∈ {0, 1}n for all n ∈ N, then

Jumpk(x) :=


n−OM(x) if n− k < OM(x) < n,

k + OM(x) otherwise.
(2.11)

Definition 2.2.9. Given a bistring x ∈ {0, 1}n for all n ∈ N, then

Cliff(x) :=


OM(x) if OM(x) ≤ 2n/3,

OM(x)− n/3 + 1/2 otherwise.
(2.12)

We consider two complex combinatorial optimisation problems to evaluate performance of

EAs in empirical study of this thesis (see Chapter 7), the random NK-Landscape problem

(Kauffman and Weinberger, 1989) and the random maximum k-satisfiability (Max-k-Sat)

problem. The NK-Landscape model (Kauffman and Weinberger, 1989) was constructed

as hard fitness landscapes which involving complex dependencies among decision variables,

resulting in many local optima. The NK-Landscape problem can be defined as:

Definition 2.2.10. Given a bistring x ∈ {0, 1}n for all n ∈ N, k ∈ N satisfying k ≤ n, and

a set of sub-functions fi : {0, 1}k → R for i ∈ [n], then

NK-Landscape(x) :=
n∑
i=1

fi (Π (x, i)) (2.13)

40

2.2. Preliminaries

where the function Π : {0, 1}n × [n] → {0, 1}k returns a bit-string containing k right side

neighbours of the i-th bit of x, i.e., xi, . . . , x(i+k) mod n.

The parameter k of the NK-Landscape problem represents the length of bit-strings for

each sub-function. Typically, each sub-function is defined by a lookup table with 2k entries,

each in the interval (0, 1). To generate a random instance of a landscape, a uniform sampling

method can be applied to each value within the lookup table, where values are sampled from

a range between 0 and 1. Moreover, changing k can vary the difficulty of an instance (Ochoa

et al., 2008). As a general rule, instances are considered to become more challenging for

larger values of k (Ochoa et al., 2008).

The Max-k-Sat problem is a complex combinatorial optimisation problem used as a

benchmarking function in this thesis. The Sat problem was the first known NP-complete

problem (Cook, 1971). The optimisation version of this problem, the Max-k-Sat problem,

aims to find an assignment that maximises the number of satisfied clauses (or equivalently,

minimises the number of unsatisfied clauses) in a given Boolean formula in conjunctive

normal form (Achlioptas and Moore, 2006; Coja-Oghlan, 2014; Gottlieb et al., 2002). The

definition of the Max-k-Sat problem as a pseudo-Boolean function optimisation is as follows:

Let the logic values TRUE and FALSE be represented by the integers 1 and 0, respectively, so

that each clause in conjunctive normal form can be represented as a function Ci : [k]→ [n],

We say the k is the length of clause Ci.

Definition 2.2.11. Given a bitstring x ∈ {0, 1}n for n ∈ N, a set C containing k-length

clauses where |C| = m for all m, k ∈ N satisfying k ≤ n,

Max-k-SatC(x) :=
m∑
i=1

Li(x) (2.14)

41

Chapter 2. Background

where the functions Li(x) indicate the truth value of the i-th clause:

Li(x) :=


1 if

∨k
j=1 xCi(j) = 1,

0 otherwise.
(2.15)

To generate a random instance of Max-k-Sat, m clauses are randomly created, and each

clause consists of k literals, which are uniformly and randomly selected without replacement

from the set [n]. According to (Coja-Oghlan, 2014) the probability of generating a satisfiable

instance decreases from almost 1 to almost 0 when the ratio of the number of clauses m to

the problem size n exceeds a threshold, denoted by rk−Sat. The threshold is computed to be

2k ln(2)− 1
2
(1 + ln(2)) + ok(1), where ok(1) represents a term that tends to 0 as k increases.

In this thesis, a random Max-k-Sat instance is considered hard if the ratio m/n is above

rk−Sat. For example, the threshold rk−Sat for Max-k-Sat is approximately 2133 if we ignore

the ok(1) term.

2.2.5 Noise and Dynamic Models

Real-world optimisation problems often involve uncertainty, such as noise and dynamics,

which can be categorised as noisy optimisation and dynamic optimisation problems, etc.

This section aims to introduce noise models and dynamic functions studied in this thesis.

In Section 2.3.3, we will discuss related work on uncertain optimisation. In Chapter 3, we

demonstrate that non-elitist EAs can handle uncertainty effectively with proper parameter

settings. In Chapter 4, we show that 2-tournament EAs can efficiently solve optimisation

problems under symmetric noise without the need for tuning parameters. Additionally, in

Chapter 5, we propose a dynamic optimisation problem to demonstrate the efficiency of the

self-adaptive EA, where static mutation-only EAs fail.

In noisy optimisation problems, the exact objective values of a search point cannot be

42

2.2. Preliminaries

precisely obtained, which we refer to as the noisy fitness function. A noisy evaluation can be

described as a random mapping from search points to real numbers, i.e., fn : X → Ω→ R,

where Ω is a sample space and X is a search space. For convenience, we omit the sample

space Ω and denote fn(x) as the noisy fitness value of the objective function f for a search

point x ∈ X . Normally, sampled noise fitness values are independent of each other. The

noise level is an indicator that describes the degree of noise affecting the evaluation in noisy

optimisation, and we will define it on a case-by-case basis. A higher noise level typically

indicates a greater impact of noise on the evaluation, making optimisation more challenging

for the algorithm.

Noise models in pseudo-Boolean optimisation can be categorised into two classes: the

prior noise randomly flips one or several bits in the search point before each evaluation,

e.g. one-bit noise and bit-wise noise, while the posterior noise makes some changes on the

fitness value after each evaluation, e.g. Gaussian noise and symmetric noise (Gießen and

Kötzing, 2016). The one-bit noise model (q) (Dang and Lehre, 2015; Droste, 2004; Friedrich

et al., 2016; Lehre and P. T. H. Nguyen, 2019; Qian et al., 2019; Sudholt, 2021) serves as the

simplest starting point for theoretical analysis. It flips at most one bit of a bitstring (search

point) then evaluates it using the function f , which can be defined as follows:

Definition 2.2.12 (One-bit noise model). Given a probability q ∈ [0, 1] which represents the

noise level, and a bistring x ∈ {0, 1}n, then

fn(x) =


f(x) with probability 1− q,

f(x′) with probability q
(2.16)

where x′ ∼ unif (N(x)).

Real-world optimisation problems are often subject to noise that can affect multiple bits

rather than just one. Thus, the bit-wise noise model (p) (Gießen and Kötzing, 2016; Qian et

al., 2019; Sudholt, 2021) can more closely imitate such reality. It flips each bit of a bitstring

43

Chapter 2. Background

independently with some probability (similar to the bitwise mutation operator) and then

evaluates it using the function f , as defined below:

Definition 2.2.13 (Bit-wise noise model). Given a probability p ∈ [0, 1] which represents

the noise level, and a solution x ∈ {0, 1}n, then

fn(x) = f(x′) (2.17)

where x′ is obtained by independently flipping each bit of x with probability p.

The Gaussian noise model (σ2) (Dang and Lehre, 2015; Friedrich et al., 2015, 2016; Gießen

and Kötzing, 2016; Qian et al., 2018; Rowe and Aishwaryaprajna, 2019) is a type of posterior

noise that adds a value independently sampled from a normal distribution to the objective

value of each evaluation. It can be defined as follows:

Definition 2.2.14 (Gaussian noise model). Given a parameter σ ≥ 0 which represents the

noise level, and a bistring x ∈ {0, 1}n, then

fn(x) = f(x) +N (0, σ2). (2.18)

The symmetric noise model as a posterior noise was first introduced by Qian et al. (2021).

They showed that the (1+1) EA with a resampling strategy can fail in the symmetric noise

model with a fixed noise level of q = 1/2, while using a population can be helpful. In this

thesis, we propose a more general symmetric noise model using a variable noise level q. The

model is defined as follows:

Definition 2.2.15 (Symmetric noise model). Given a probability q ∈ [0, 1] which represents

the noise level, and an arbitrary number C ∈ R which is a parameter of the noise model, and

a bistring x ∈ {0, 1}n, then

fn(x) =


f(x) with probability 1− q,

C − f(x) with probability q.
(2.19)

44

2.2. Preliminaries

In dynamic optimisation problems, the objective function changes over time. It can be

described as follows: there is a sequence of functions ft : X → R, where a search space

X and t ∈ N, with ft representing the objective function applied in the t-th evaluation.

Additionally, a sequence of optimal regions exists, which are sets of acceptable search points

corresponding to the function ft. A formal description of dynamic optimisation is shown in

Definition 2.2.16. The goal of an algorithm solving dynamic optimisation problems is to find

search points in optimal regions.

Definition 2.2.16 (Dynamic optimisation (Dang et al., 2017)). A dynamic function F is

a random sequence of functions (ft)t∈N, where ft : X → R and a search space X for all

t ∈ N. The optimal regions associated with F is the sequence (OPTt)t∈N, where OPTt =

argmaxx ft(x).

Dynamic optimisation is more challenging than static optimisation, as the optimal solution

or the functions may change over time. For instance, the weight of each bit position in the

dynamic linear function (Lengler and Schaller, 2018) changes over time. Weights of each

objective function is independently sampled from a distribution. The DBV problem is a

special case of dynamic linear functions, which was first proposed by (Lengler and Meier,

2020). It can be considered as a dynamic version of the classical function BinVal(x) :=∑n
i=1 2

n−i · xi, which is defined as:

Definition 2.2.17. Given a bistring x ∈ {0, 1}n,

DBVτ (x) :=
n∑
i=1

2n−i · xπτ (i) (2.20)

where τ ∈ N0 is the number of rounds ∗ and πτ : [n]→ [n] is a permutation drawn uniformly

at random from all possible permutations of [n].

In practice, it is common to evaluate each individual in population Pt once before se-

lection and mutation. However, in such cases, each comparison under uncertainty in the
∗Typically, a round contains all evaluations in a generation of the algorithm.

45

Chapter 2. Background

2-tournament and (1 + 1) selection is not independent, making the analysis challenging.

Therefore, we can apply the reevaluation strategy (Dang and Lehre, 2015; Friedrich et al.,

2016; Gießen and Kötzing, 2016; Qian et al., 2019; Qian et al., 2021; Qian et al., 2018) in

this situation, which involves reevaluating the noisy fitness value of an individual every time

it enters a tournament. Note that this strategy is only applicable to the (1+1) EA and the

2-tournament EA in this thesis.

2.3 Related Work

2.3.1 Parameter Settings in EAs

As shown in Section 2.2.1, EAs are parameterised algorithms, which require several param-

eters such as mutation rate and selection parameter to be identified. The configuration of

these parameters has a significant impact on the performance of EAs, which has been exten-

sively studied through runtime analysis. For example, considering any linear function and a

constant c > 0, the runtime of the (1+1) EA is as follows: super-polynomial if the mutation

rate χ/n ∈ ω (log(n)/n) or χ/n = o(n−c); polynomial if χ/n ∈ Ω(n−c) and χ ∈ O(log(n)/n);

and O(n log(n)) if χ/n = c/n (Witt, 2013). The appropriate mutation rate is also influenced

by uncertainty. The runtime of the (1+1) EA algorithm is no longer O(n log(n)) for all

mutation rates χ/n = c/n where the constant c > 0 on dynamic linear functions. If the

mutation rate is above a threshold value χ/n = c/n > c0/n ≈ 1.59/n, then the runtime be-

comes super-polynomial (Lengler and Schaller, 2018). Parameter settings in non-elitist EAs

are also crucial, as there is a “balance” between the reproduction rate and the mutation rate,

which refers to the error thresholds introduced in Section 2.2.1. For instance, the runtime

of the (µ, λ) EA on any function with a polynomial number of optima becomes exponential

if the mutation parameter χ is above λ/µ (Lehre, 2010).

46

2.3. Related Work

Parameter settings typically depend on the problem instance and optimisation environ-

ment, making the identification of appropriate parameter settings a challenging task (B.

Doerr and C. Doerr, 2020; Lobo et al., 2007). As mentioned in Section 1.1, Eiben et al.

(1999) classified parameter setting techniques into parameter tuning and parameter control

(see Figure 1.1). A prevalent approach for parameter tuning involves conducting prelimi-

nary tests, evaluating their performance, and selecting the most promising static parameter

setting for optimisation. Meanwhile, parameter control, which includes deterministic, adap-

tive, and self-adaptive mechanisms, dynamically adjusts parameters during the optimisation

process. Deterministic parameter control mechanisms adjust algorithm parameter settings

based on deterministic rules, typically time-based. Adaptive parameter control mechanisms

update parameter settings depending on the optimisation process. In self-adaptive param-

eter control mechanisms, parameters are encoded within the genomes of individuals and

evolve together through variation operators. The related work of them will be presented in

Sections 2.3.1.1, 2.3.1.2 and 2.3.2, respectively.

2.3.1.1 Parameter Tuning

Parameter tuning aims to identify the fixed (nearly) optimal parameter setting for given

problems during the whole optimisation process. Through rigorous mathematical proofs,

we can determine the global optimal parameter setting. Theoretical results such as runtime

analyses usually require knowledge of the optimisation problem, e.g., the instance, structure,

and environment. However, obtaining this information is usually difficult and the information

about the fitness function is typically unknown in real-world optimisation. Therefore, in

practice, the main idea of parameter tuning is to run some initial tests and observe their

performance. Then we configure the most promising parameter values for the algorithm.

There are many parameter tuning tools that can automatically identify reasonable parameter

settings. One of the representative methods is irace, an automated configuration tool for

47

Chapter 2. Background

optimisation algorithms built by López-Ibáñez et al. (2016). It uses iterated racing steps

to identify the appropriate parameter values. Similar algorithm configuration frameworks

include ParamILS (Hutter et al., 2009) and CALIBRA (Adenso-Diaz and Laguna, 2006),

etc. Alternatively, Hutter et al. (2011) and Ansotegui et al. (2015) applied machine learning

to predict good parameter settings and proposed the model-based approaches SMAC and

GGA++, respectively. For a comprehensive review of parameter tuning, we direct readers

to the survey by Huang et al. (2020).

In general, parameter tuning methods can be challenging to use in real optimisation prob-

lems because they often require a significant amount of time to run. Furthermore, the

recommended parameter values are static, and the optimal parameter setting may change

during the optimisation process. For instance, the optimal mutation rate of the (1+1) EA

on LeadingOnes depends on the current best fitness value achieved, which is given by

1/(LO(x) + 1), where x is the current parent individual (Böttcher et al., 2010). In a sim-

ilar vein, Jansen and Wegener (2006) presented a function illustrating that the (1+1) EA

algorithm, employing a series of time-dependent mutation rates, discovers the optimum in

polynomial time. Conversely, using any fixed mutation rate needs more than polynomial

time with an extremely high probability. Moreover, the fitness function may change over

time in practice, i.e., dynamic optimisation, requiring that the parameter settings change

accordingly. Therefore, it is necessary to change the parameters with respect to the current

optimisation situation.

2.3.1.2 Deterministic and Adaptive Parameter Control

Exploration and exploitation. Exploration involves searching in completely new areas of the

search space, while exploitation involves searching in areas of the search space that are close

to previously promising regions (Črepinšek et al., 2013). All search algorithms should bal-

48

2.3. Related Work

ance both exploration and exploitation to efficiently search the entire search space. In early

studies, it was believed that for exploration, low selective pressure and high-intensity varia-

tion were required, while for exploitation, high selective pressure and conservative variation

were required (Črepinšek et al., 2013). Deterministic parameter control mechanisms adjust

the parameters of algorithms to adapt selective pressure and strength of variation based on

deterministic rules that are typically based on time (Eiben et al., 1999). For example, simu-

lated annealing (Kirkpatrick et al., 1983) is a famous heuristic algorithm with a deterministic

parameter control mechanism, in which the selective pressure increases with time.

However, the schedule should be problem or instance-specific, making it challenging to

choose a specialised schedule for each independent problem. Therefore, we can update rules

depending on the optimisation process, called adaptive parameter control mechanism or self-

adjusting parameter control mechanism. Intuitively, the algorithm can be in the exploration

phase if the individuals are easy to improve after variation. The algorithm could also be stuck

at some local optimum far from the global optimum. Based on this intuition, Rechenberg

(1978) proposed the well-known 1/5th-success-rule. This algorithm increases its mutation

rate if the observed success rate is larger than 1/5, i.e., at least one out of five solutions

is improved; otherwise, it decreases the mutation rate. In the rest of this section, we will

focus on previous studies of adaptive parameter control mechanisms within the theory of

EC. It is worth mentioning that two PhD theses by Rajabi (2022) and Hevia Fajardo (2023)

have conducted outstanding work in theory on adapting mutation rate and population size,

respectively.

The first prominent topic in this field concerns adapting the mutation rate. A straightfor-

ward method for tuning the mutation rate on-the-fly involves basing the mutation rate on

the current fitness value. For example, the mutation rate may be inversely proportional to

the fitness value, meaning that as the fitness value of a population increases, the mutation

rate decreases, shifting from exploration to exploitation. The motivation for adjusting the

49

Chapter 2. Background

mutation rate relative to fitness is to balance exploration and exploitation (Črepinšek et al.,

2013). In the referenced study (Böttcher et al., 2010), the expected runtime of the (1+1) EA,

when utilising a dynamic fitness-dependent mutation rate, is significantly lower than that

of the optimal static mutation rate on LeadingOnes. Similarly, Lehre and Sudholt (2020)

demonstrated that the (1+λ) EA using the optimal fitness-dependent mutation rate has an

asymptotically optimal expected runtime on OneMax, i.e., the black-box complexity among

all λ-parallel mutation-based black-box algorithms. However, this fitness-dependent adap-

tive parameter control method might be difficult to apply in real-world optimisation, since it

usually heavily relies on knowledge of optimisation problems. That is, we need to know the

relationship between search points and their objective values of the objective function to de-

sign a proper adaptation. Nonetheless, these studies provide valuable insights for designing

more general adaptive parameter control methods.

Another type of approach involves adapting the mutation rate based on the “progress” of

the previous generation. For instance, B. Doerr et al. (2019) proposed a self-adjusting muta-

tion rate mechanism that results in the (1+λ) EA exhibiting a better asymptotic expected

runtime on OneMax than that of the optimal fitness-dependent mutation rate. Using this

self-adjusting mutation rate mechanism, in each generation, 50% of the offsprings are mu-

tated with a mutation rate of 2χ/n, while the remaining 50% are mutated with a rate of

χ/(2n), where χ/n represents the current generation mutation rate. Subsequently, the new

mutation rate is determined by the mutation rate utilised by the best offspring. Simultane-

ously, B. Doerr et al. (2019, 2021) employed the fundamental concept of the 1/5th-success

rule to control the mutation rate of the (1+1) EA. In their algorithm, the mutation rate is

increased by multiplying a factor A > 1 if the offspring outperforms the parent; otherwise,

it is decreased by multiplying a factor 0 < b < 1. However, using the 1/5th-success rule to

adjust the mutation rate could lead to a small mutation rate when trapped in local optima,

since it is challenging to produce fitter individuals, which results in a continuous reduction

50

2.3. Related Work

of the mutation rate. When optimising multi-modal functions, it is generally believed that

a high mutation rate can be advantageous for escaping local optima.

To compensate for this disadvantage, Rajabi and Witt (2022) proposed a learning-inspired

mechanism called stagnation detection, which increases the mutation rate after a specific

number of iterations without improvement to enhance exploration. This number of itera-

tions ensures that the neighbourhood has been thoroughly searched with a high probability.

They incorporated the stagnation detection mechanism into the (1+1) EA algorithm and

demonstrated that such an algorithm can optimise the well-studied multi-modal function

Jumpk with an asymptotic runtime comparable to that of the (1+1) EA using the optimal

fitness-dependent mutation rate in (Böttcher et al., 2010). This mechanism might take too

long to use larger mutation rates, which are beneficial for escaping local optima, and thus

may slow down the optimisation process (B. Doerr and Rajabi, 2023).

Another area of interest is population size adaptation. Jansen et al. (2005) introduced

the multiplicative success-based rule for adapting offspring population size, which also build

on the idea of the 1/5th-success rule. In this approach, the offspring size λ is multiplied by

F if there is no fitness improvement compared to the parent population, and multiplied by

s otherwise, where F ≥ 1 and s ∈ (0, 1). The authors rigorously derived optimal offspring

population sizes for the (1+λ) EA on benchmark functions, such as OneMax and Leadin-

gOnes, suggesting that using this adaptive approach could yield comparable performance

to employing the optimal offspring population size informed by their insights. Their follow-

ing empirical study demonstrated that the adaptive (1+λ) EA with F = 1/s = 2 can be

promising on some benchmark functions. Specifically, the number of function evaluations

required to find the optimum was slightly higher, but still comparable to the best choices for

λ observed in their earlier empirical studies. Later, the (1+λ) EA with this multiplicative

success-based rule has been called the (1 + {Fλ, λ/s}) EA (B. Doerr and C. Doerr, 2020;

Hevia Fajardo, 2019). In (Hevia Fajardo and Sudholt, 2022), the authors proved that this

51

Chapter 2. Background

algorithm has comparable performance with static (1+λ) EA using any mutation rate when

optimising any everywhere hard function.

Despite adapting the population size in elitist EAs, adapting the population size in non-

elitist EAs is even more crucial. As mentioned, non-elitist EAs should balance the repro-

ductive rate and the mutation rate. Therefore, parent and offspring population sizes should

be set carefully in comma selection EAs, such as the (1, λ) EA. A sharp threshold exists

at λ = log e
e−1

(n) between exponential and polynomial runtimes on OneMax when using

the standard mutation rate, i.e., χ/n = 1/n (Rowe and Sudholt, 2014). Hevia Fajardo

and Sudholt (2021a) introduced a multiplicative success-based rule into a non-elitist EA to

adapting population size, (1, λ) EA, which they named (1, {F 1/sλ, λ/F}) EA. This algorithm

has three adaptive parameters: update strength F ≥ 1, success rate s > 0, and the maximal

population size λmax. In a generation where no improvement in fitness is found, λ is increased

by a factor of F 1/s and in a successful generation, λ is divided by a factor F . If one out of

s + 1 generations is successful, the value of λ is maintained. They demonstrated in (Hevia

Fajardo and Sudholt, 2021b) that this algorithm, incorporating the reset mechanism where

λ is reset to λ = 1 whenever it exceeds a predefined maximum of λmax, can achieve the global

optimum within O(n) expected generations and O(n log n) runtime on a bi-modal function

Cliff (Hevia Fajardo and Sudholt, 2021b). This results in an acceleration of order Ω(n2.9767)

compared to the expected optimisation time when using the most suitable fixed value for

λ. The reason for using this reset mechanism is to allow the offspring to “jump down” from

local optima of the Cliff function with a high probability. This adaptation mechanism

has also been proven beneficial for dynamic optimisation. More recently, Kaufmann et al.

(2023) demonstrated that the (1, {F 1/sλ, λ/F}) EA without the reset mechanism achieves

the optimum of any dynamic monotone function, such as the dynamic linear function and

the DBV function, in O(n log n).

Moreover, studies exist on adapting population size in GAs which involve crossover, such

52

2.3. Related Work

as the (1 + (λ, λ)) GA (B. Doerr et al., 2015). In each generation, this algorithm employs two

phases: In the first phase, the parent is mutated λ times with a mutation rate of χ/n. Next,

the second phase uses a biased uniform crossover λ times between the parent and the fittest

mutated offspring. This biased uniform crossover selects each bit independently at random

from the fittest mutated offspring with crossover rate c ∈ (0, 1) and from the parent otherwise.

Finally, it performs an elitist selection considering the parent and the λ offspring obtained

from the second phase. B. Doerr et al. (2015) suggested that using a relatively high mutation

rate, i.e., χ/n = λ/n, and a crossover rate c = 1/λ can balance exploration and exploitation;

however, the setting of population size becomes critical. To control the population size, they

proposed a fitness-dependent adaptive mechanism and proved that updating the population

size by λ =
⌈√

n/(n−OM(x))
⌉

where x is the current parent individual, with mutation

rate χ/n = λ/n and crossover rate c = 1/λ, yields an expected optimisation time of Θ(n) on

OneMax. This is asymptotically faster than any static parameter values. Similarly to the

fitness-dependent adaptive mutation rate mechanism, this approach also requires knowledge

of the objective function. Then, B. Doerr and C. Doerr (2018) applied the 1/5th-success rule

to the (1 + (λ, λ)) GA, so-called self-adjusting (1 + (λ, λ)) GA, and proved that it requires

also only O(n) expected function evaluations on OneMax. This reduces the optimisation

time of the algorithm by more than a constant factor compared to optimal static parameter

settings. When optimising bi-modal functions, such as Jumpk, Hevia Fajardo and Sudholt

(2023) demonstrated that the adaptive (1 + (λ, λ)) GA rapidly increases λ to λmax when

encountering a local optimum, even though the “optimal” population size to escape local

optima varies depending on the jump size k. To make the algorithm more efficient in escaping

local optima, the authors applied the reset mechanism to this adaptive (1 + (λ, λ)) GA,

allowing the parameter to cycle through [λmax] to attempt different population sizes. Their

analysis revealed that the expected runtime of the self-adjusting (1 + (λ, λ)) GA with the

reset mechanism is as low as that of the (1+1) EA with the optimal mutation rate.

53

Chapter 2. Background

2.3.2 Self-adaptation in EAs

Intuitively, an offspring produced by specific operators with suitable parameter settings can

possess a higher potential to surpass its parent. Therefore, we can encode parameters as well

as solutions in the genotype of each individual, allowing each individual to represent not only

the solution but also its unique parameters. We can then design specific variation operators

and selection mechanisms for these individuals to evolve their parameters and solutions si-

multaneously. This mechanism is known as self-adaptation, which was originally developed

to control parameters in evolution strategies (ESs) for solving continuous optimisation prob-

lems in the 1980s (Schwefel, 1981), was later introduced to discrete optimisation. We refer

readers to the thesis by Meyer-Nieberg (2007) for further information on self-adaptation in

ES. In this section, we concentrate on EAs for optimising pseudo-Boolean functions. Within

the scope of this research, we emphasise the theoretical study of self-adaptation, while also

slightly extending to empirical study. Table 2.2 provides a summary of various studies on

self-adaptive parameter control mechanisms in EC, inclusive of the research presented in this

thesis.

Early studies on EAs with self-adaptation solving discrete optimisation problems concen-

trated on simple benchmark problems and employed empirical analysis. In 1992, Bäck (1992)

first transferred the idea of self-adaptation from ESs to GAs. The mutation rate, represented

as real numbers, was transformed into binary code and integrated with the solution in the

bitstring of each individual, or genotype. During mutation, the binary-coded mutation rate

of the genotype of an individual is first decoded to a real number. Next, a new binary-

coded mutation rate is generated by bit-wisely mutating the original binary-coded mutation

rate with a probability equivalent to the decoded real number. Finally, the new solution is

created by bitwise mutation of the solution of the individual, using the mutation rate de-

coded from the newly generated binary-coded mutation rate. Thus, the offspring is created

54

2.3. Related Work

Table 2.2: Research on self-adaptive parameter control mechanisms in EC

Reference Algorithm Self-adapted parameter(s) Encoded method Selection mechanism Problem class

(Bäck, 1992) GA Mutation rate Binary-encoded Proportional selection Continuous functions

(Smith and Fogarty, 1996) GA Mutation rate Gray-coded Proportional selection NK-Landscape

Binary-encoded

(Bäck and Schütz, 1996) EA Mutation rate Real-valued Proportional selection Dynamic function

(Galaviz and Xuri, 1996) GA Mutation rate Binary-encoded Proportional selection Continuous functions

Crossover rate

(Bäck et al., 2000) GA Mutation rate Real-valued Elitist selection Continuous functions

Crossover rate

(Smith, 2001) GA Mutation rate Finite set Elitist selection OneMax

Dynamic function

(Eiben et al., 2006) GA Mutation rate Real-valued Elitist selection Continuous functions

Population size

Selection parameter

(Serpell and Smith, 2010) GA Mutation rate Finite set Elitist selection TSP

Choice of mutation operator

(Dang and Lehre, 2016b) EA Mutation rate Finite set (2 rates) 2-tournament selection PeakedLO

(Case and Lehre, 2020) EA Mutation rate Real-valued (µ, λ)-selection LeadingOnesk

(B. Doerr et al., 2021) EA Mutation rate Real-valued (1, λ)-selection OneMax

Chapter 4 EA Mutation rate Finite set (2 rates) 2-tournament selection Noisy functions

Chapter 5 EA Mutation rate Real-valued (µ, λ)-selection Dynamic function

Chapter 6 EA Mutation rate Real-valued (µ, λ)-selection PeakedLOm,k

Chapter 7 EA Mutation rate Real-valued (µ, λ)-selection NK-Landscape

Max-k-Sat

Noisy functions

with the new solution and the new mutation rate. The selection process is solely based on

the fitness values of the individuals. The experiments conducted by Bäck (1992) illustrated

that self-adaptation is a possible method to control the mutation rate in the non-elitist GA.

However, the experiments did not include a comparison with other algorithms. Instead of

encoding the mutation rate directly into a binary code, Smith and Fogarty (1996) argued

that the use of Gray-coded mutation rates can provide a smoother change of mutation rates.

Moreover, they demonstrated that GAs utilising the self-adaptive method can outperform

those with fixed mutation rates when solving NK-Landscape problems, achieving higher

55

Chapter 2. Background

fitness within the evaluation budget. As introduced in Section 2.2.4, the landscape of NK-

Landscape problems contains numerous local optima (Kauffman and Weinberger, 1989).

Notably, the advantage of the self-adaptive algorithm in achieving higher fitness becomes

more pronounced for harder (more local optima) problem instances of NK-Landscape.

Bäck and Schütz (1996) further improved this self-adaptation method by using a real-valued

mutation rate to address the imprecision of the binary-coded mutation rate. Consequently,

the genotype of an individual became a combination of a bitstring and a real number, rather

than just a bitstring, an encoding method similar to the one presented in Section 2.2.2.

During mutation, a new mutation rate is generated by sampling from a distribution that is

based on the previous value and a learning rate. The learning rate is a hyper-parameter in

this self-adaptive EA that controls the speed of the adaptation process. They used a learn-

ing rate which was independent from the problem instance size n. An empirical study was

conducted on the EA with this self-adaptive parameter control by minimising a dynamic

function that periodically switches between two pseudo-Boolean functions, OneMax and

ZeroMax. Here, ZeroMax(x) := n−OM(x), given a bitstring x ∈ {0, 1}n for all n ∈ N.

The results showed that the mutation rates can respond to changing of objective functions.

Specifically, the mutation rates decrease if the fitness value decreases, and increase otherwise.

Similarly, Smith (2001) made a similar observation where the mutation rate is self-adapted

by selecting uniformly at random from a finite set of mutation rates. These empirical ob-

servations suggest that self-adaptation is capable of adapting the mutation rate in dynamic

environments. In the context of more practical problems, Serpell and Smith (2010) investi-

gated various self-adapting mutation rate mechanisms in the TSP. They demonstrated that

a GA applying self-adaptation of the mutation rate, using a set of discrete mutation rates,

yielded shorter mean paths compared to the best fixed-parameter GA.

In addition to self-adapting mutation rates, which is the primary focus of the aforemen-

tioned research, other parameters, such as the crossover rate, can also be adapted. Galaviz

56

2.3. Related Work

and Xuri (1996) empirically investigated the performance of GAs with self-adapting mutation

and crossover rates on several numerical functions and compared them to static GA. Muta-

tion rates and crossover rates were encoded as binary codes, which were then incorporated

into genotypes of individuals. They employed the same self-adapting mutation rate strategy

as proposed by Bäck (1992). To self-adapt the crossover rate, they applied the crossover

operator to two selected individuals with a probability equal to the average of their inherited

crossover rates. They evaluated the algorithms on several binary-coded, two-dimensional

continuous optimisation benchmark problems. Their findings revealed that GAs adapting

both mutation and crossover rates can achieve fitness values comparable to static GAs with

the most optimal settings, within the given budget of fitness evaluations. A subsequent study

by Bäck et al. (2000) proposed a “parameterless” GA, which featured self-adapting mutation

and crossover rates, as well as an adapting population size via the 1/5th-success-rule. From

their experiments on binary-coded ten-dimensional continuous optimisation benchmark prob-

lems, they discovered that this “parameterless” GA could outperform other GAs with only

one dynamic parameter. Eiben et al. (2006) explored self-adaptation of global parameters in

GAs, specifically the population size and the selection parameter. They encoded values into

the genotype of each individual, and the global parameters were determined by summing the

local votes of all individuals. On all benchmarking functions in their experiments, the mean

achieved fitness values for the GA with self-adapting selection parameter were statistically

higher than those of other self-adaptive GAs and fine-tuned GAs.

Empirical studies cannot guarantee the correctness of analysis for randomised heuristic

algorithms, as only a limited number of problem sizes can be explored in experiments. The-

oretical analysis, such as runtime analysis introduced in Section 2.2.3, can compensate for

this limitation. Moreover, the proofs underlying runtime analysis often yield a deeper un-

derstanding of the evolutionary process than experiments alone. However, it is usually chal-

lenging to achieve rigorous results even for simple algorithms on straightforward functions.

57

Chapter 2. Background

In analysing self-adaptive algorithms, the difficulty increases, as it involves not only the

changing of solutions but also the dynamics of parameters. Therefore, compared to empir-

ical studies, theoretical research on self-adaptation in discrete optimisation is less explored.

Only a few theoretical studies on self-adaptation have emerged in the past decade. Dang

and Lehre (2016b) first proved that the 2-tournament EA with self-adapting two mutation

rates can perform effectively on the PeakedLO function, defined as

PeakedLO(x) :=


m if x = 0n,

LO(x) otherwise,
(2.21)

where a bitstring x ∈ {0, 1}n and m ∈ R for all n ∈ N. Their algorithm utilises a fitness-only

sorting partial order (Definition 2.2.4(a)) to sort the parent population before tournament

selection and adjusts the mutation rate for each offspring individual by switching to an alter-

native rate with probability pc. This probability serves as a self-adaptive strategy parameter

for the algorithm. They employed the level-based theorem (Corus et al., 2018) to estimate

the expected number of evaluations required for the 2-tournament EA with self-adaptive

mutation rates to escape local optima and achieve the global optimum, assuming the ini-

tial population starts from the local optimum 0n. As a comparison, they also provided the

runtime of the 2-tournament EA using either a fixed mutation rate or a uniformly chosen

mutation rate from two given rates for this problem. The study demonstrated that self-

adaptation, with a sufficiently low self-adaptive strategy parameter pc, can robustly control

mutation rates in non-elitist EAs. Moreover, this automated control can lead to exponential

speedups compared to EAs employing fixed mutation rates or uniform mixing of mutation

rates. Although this rigorous analysis provided the first evidence of the benefits of self-

adapting mutation rate mechanisms, it only involved two mutation rates.

Subsequent works on self-adapting mutation rates from a given interval were conducted by

Case and Lehre (2020) and B. Doerr et al. (2021). Case and Lehre (2020) demonstrated that

(µ, λ) self-adaptive EA (defined in Section 2.2.1) can be effective on the unknown structure

58

2.3. Related Work

version of the LeadingOnes function:

LeadingOnesk(x) :=
k∑
i=1

i∏
j=1

xj (2.22)

where a bitstring x ∈ {0, 1}n and k ∈ [n] for all n ∈ N. Here, the term structure in

this context refers to the number of relevant bit-positions, which are determined by the

parameter k. Static mutation-only EAs, such as the (1+1) EA, require knowledge of k to

set the “right” mutation rate for optimal performance, which corresponds to an asymptotic

mutation rate of Θ(1/k) (Cathabard et al., 2011). In the context of unknown structure,

the algorithm has black-box access to the function, meaning it is aware of n but not k.

This algorithm employs (µ, λ) selection to choose individuals from the parent population,

which is sorted according to a fitness-first sorting partial order (Definition 2.2.4(b)). Next,

the mutation rates of selected individuals are self-adapted by multiplying with A with a

probability of pinc or multiplying with b otherwise, where self-adaptive parameters A > 1 and

pinc, b ∈ (0, 1). Finally, individuals in the offspring population are generated using a bitwise

mutation operator with the updated mutation rate. Theoretical results have shown that

the runtime of (µ, λ) self-adaptive EA is asymptotically optimal among all unary unbiased

black-box algorithms (Cathabard et al., 2011). Their analysis partitioned the search space

of the solution and mutation rate into two-dimensional levels. Following this, the level-based

theorem (Corus et al., 2018) (presented in Theorem 2.2.1) was employed to estimate the

runtime.

Another study on self-adapting mutation rates within an interval is by B. Doerr et al.

(2021), who rigorously analysed a self-adaptation mechanism for the (1, λ) EA. In this

mechanism, the mutation rate χ/n is adjusted by either multiplying or dividing by a constant

F > 1 (selected uniformly at random) before mutating the solution. They demonstrated that

the algorithm optimises the OneMax function in an expected runtime O (n log(n)), which is

the best possible result for mutation-only EAs (Lehre and Witt, 2012). In the opinion of the

author of this thesis, it is more appropriate to classify the algorithm as adaptive rather than

59

Chapter 2. Background

self-adaptive, despite the authors referring to it as self-adaptive in B. Doerr et al. (2021).

This is because each generation contains only one parent, leading to a single parameter

setting. Thus, the process of producing the next parent individual can be described without

the context of self-adaptation: First, generate λ offspring using two mutation rates, Fχ/n

and χ/(Fn), selected uniformly at random to mutate the current parent individual. Then,

select the fittest individual as the next parent and set the mutation rate to the one used

for that individual. There is no need to “store” the mutation rate in the genotype of each

individual. This approach is similar to the self-adjusting (adaptive) (1+λ) EA introduced

in (B. Doerr et al., 2019).

Overall, although there are theoretical studies on self-adaptation demonstrating efficiency

and effectiveness on various benchmarking functions and scenarios, empirical research also

suggests that self-adaptation may be beneficial for dynamic optimisation and multi-modal

functions. However, the theoretical investigation of these specific scenarios remains limited,

such as uncertain environments.

2.3.3 EAs in Uncertain Environments

In many cases, obtaining the exact objective value of a search point is challenging, or the fit-

ness function may change over time. As a result, a variety of uncertainties must be considered

in real-world optimisation (Jin and Branke, 2005). While most studies on how EAs respond

to uncertainties are empirical (Cruz et al., 2011; Jin and Branke, 2005; T. T. Nguyen et al.,

2012), there is also a wealth of rigours analyses of EAs under noise. In uncertain environ-

ments, theoretical analyses of EAs have explored three types of uncertainty: noise, dynamic,

and partial evaluation. This section primarily focuses on related work in noisy and dynamic

optimisation. For partial evaluation, readers are referred to (Dang and Lehre, 2016a; B.

Doerr et al., 2012). Through theoretical analysis, researchers aim to understand how uncer-

60

2.3. Related Work

tainty affects the behaviour of EAs, such as runtime, and identify effective strategies and

parameter settings for addressing uncertainty. Section 2.2.5 provided preliminaries related

to noise and dynamics. Furthermore, Sections 2.3.3.1 and 2.3.3.2, will present summaries of

notable theoretical works in the fields of noisy and dynamic optimisation, respectively.

2.3.3.1 Noisy Optimisation

In optimising noisy fitness functions, the algorithm cannot rely on obtaining exact objective

values, as they may be affected by noise. Due to the difficulty of analysing EAs in the presence

of noise, most existing theoretical studies have focused on two simple functions: OneMax

and LeadingOnes under in noisy environments. As introduced in Section 2.2.5, the noise

level is describes the degree of noise affecting the evaluation. Initial research demonstrated

that several simple EAs can be robust to moderate noise levels but can become inefficient

when faced with high levels of noise. For instance, the runtimes of (1+1) EA on Leadin-

gOnes are polynomial if noise levels (descriptions of noise levels shown in Section 2.2.5) are

q ∈ O(log(n)/n2) and p ∈ O(log(n)/n3) under one-bit noise and bit-wise noise, respectively

(Sudholt, 2021). In contrast, runtimes become exponential if noise levels are q ∈ Ω(1/n) and

p ∈ Ω(1/n2) (Sudholt, 2021).

A common method to cope with high levels of uncertainty is using a resampling strategy

which averages the value of many uncertain evaluations (Qian et al., 2019; Qian et al., 2018).

The (1+1) EA using a resampling strategy solves OneMax and LeadingOnes in high-level

one-bit, bit-wise and Gaussian noise models in expected polynomial time (Qian et al., 2019;

Qian et al., 2018). For instance, the runtime of the (1+1) EA using a resampling strategy

remains polynomial on LeadingOnes under the one-bit noise model with any noise level q ∈

[0, 1]. More specifically, this algorithm guarantees a runtime ofO(mn8), ifm = 4n4 log(n)/15,

where sample size m represents the parameter defining the number of evaluations for each

61

Chapter 2. Background

individual (Qian et al., 2019). However, the drawback of using a resampling strategy is

that it may “waste” numerous evaluations if the noise level is small or even non-existent.

For example, the runtime of the original (1+1) EA is O(n2) on LeadingOnes in the one-

bit noise model with q ∈ O(1/n2) (Sudholt, 2021). Therefore, the algorithm employing a

resampling strategy requires prior knowledge of the noise level to set appropriate parameters

for optimal performance. Furthermore, the resampling strategy cannot discern the fitter of

two search points if the expected noisy fitness values are identical, regardless of the sample

size settings. For instance, Qian et al. (2021) demonstrated that the (1+1) EA fails in

the symmetric noise model, where the fitness value of a search point x is C −OM(x) with

probability q = 1/2 and OM(x) otherwise, with C ∈ R (a particular case of Definition 2.2.15).

In this case, the expected noisy fitness value of any search point is always C.

Employing a population is another common approach to address noise. With respect to

the aforementioned symmetric noise model, where the resampling strategy encounters dif-

ficulties, Qian et al. (2021) demonstrated that the (µ+1) EA and the (1+λ) EA can solve

the OneMax problem in the symmetric noise model within an expected polynomial time.

Also, using a population, the algorithm can tolerate higher levels of noise compared with

single-individual EAs. For instance, Gießen and Kötzing (2016) demonstrated that the run-

time of the (1+λ) EA on LeadingOnes under one-bit noise with [0, 1/2] is O(n2), provided

that the population size is λ ≥ 3.42 log(n) and λ ∈ O(n). Utilising a non-elitist population

has also proven to be efficient under noise. Dang and Lehre (2015) demonstrated that 2-

tournament EAs with a sufficiently large population size and a conservative mutation rate

yields an expected runtime of O(n log(n) log(log(n))) on OneMax under any one-bit noise

level. Additionally, they proved that the non-elitist EA can handle extremely high levels

of Gaussian noise (Dang and Lehre, 2015). As mentioned in Section 2.2.1, the parameter

setting, particularly the mutation rate, is crucial for non-elitist EAs. Their analysis solely

considers a specific, sufficiently small mutation rate to cope with noise. However, the results

62

2.3. Related Work

of the relationship for non-elitist EAs between the mutation rate, noise level, population

size, and runtime are currently incomplete. Gaining insight into how noise affects the algo-

rithms is valuable. More importantly, understanding this relationship is essential for setting

appropriate parameters to achieve the highest possible performance.

Concerning the focus of this thesis, the robustness of non-elitist EAs with self-adaptation

remains uncertain in noisy environments. Although Dang and Lehre (2015) did not provide

precise guidance on setting the mutation rate under noise, they recommended using a small

mutation rate. Based on this, we believe controlling the mutation rate is necessary in noisy

environments. Exploring self-adapting mutation rates appears to be a promising avenue.

Several algorithms, somewhat broader in scope than EAs, can also handle noise. These

include estimation of distribution algorithms (EDAs) (Friedrich et al., 2016), ant colony

optimisation (ACO) (Friedrich et al., 2016), and the voting algorithm (Aishwaryaprajna and

Rowe, 2023; Rowe and Aishwaryaprajna, 2019). Although these results are not included

in the discussion of this thesis, we refer to Tables 2.3-2.10 for more details. These tables

summarise recent theoretical studies of randomised heuristic algorithms in noisy settings

(including those obtained in this thesis). Tables 2.3 and 2.4 show results for the one-bit

noise model (q) on OneMax and LeadingOnes, respectively. Table 2.5 and 2.6 show results

for the bit-wise noise model (p) on OneMax and LeadingOnes, respectively. Table 2.7

and 2.8 show results for the Gaussian noise model (σ) on OneMax and LeadingOnes,

respectively. Tables 2.9 and 2.10 show results for the symmetric noise model (C, q) on

OneMax and LeadingOnes, respectively. Note that the previous studies in (Qian et al.,

2021; Qian et al., 2018) do not provide exact runtimes. In these cases, the runtime results

are deduced from proofs.

63

Chapter 2. Background

Table
2.3:

T
heoreticalresults

ofrandom
ised

heuristic
algorithm

s
on

O
n
eM

a
x

in
the

one-bit
noise

m
odel

(q)

A
lgorith

m
P
aram

eter
settin

gs
N

oise
level

q
E
xp

ected
ru

ntim
e

(1+
1)

E
A

χ
/n

=
1/n

O
(1/n

)
Θ
(n

log
(n
))

(G
ießen

and
K

ötzing,2016)

χ
/n

=
1/n

O
(log

(n
)/n

)
p
oly

(n
)

(G
ießen

and
K

ötzing,2016)

χ
/n

=
1/n

ω
(log

(n
)/n

)
2
ω
(lo

g
(n

))
(G

ießen
and

K
ötzing,2016)

(1+
1)

E
A

(resam
pling)

χ
/n

=
1/n

;
m

=
4n

3
[0,1]

p
oly

(n
)

(Q
ian

et
al.,2019)

(µ+
1)

E
A

χ
/n

=
1/n;

µ
>

12
log

(15n
)/q

(0,1]
O
(µ
n
log

(n
))

(G
ießen

and
K

ötzing,2016)

(1+
λ)

E
A

χ
/n

=
1/n;

λ
≥

m
ax{12/q,24}

n
log

n
(0,1]

O
((n

2
log

(n
)
+
n
2λ
)
/q)

(G
ießen

and
K

ötzing,2016)

A
C

O
-fp

ρ
=

o
(1/

(n
3
log

n
))

[0,1]
O
(n

2
log

(n
)/ρ

)
(Friedrich

et
al.,2016)

2-tournam
ent

E
A

χ
/n

=
a
/n;

λ
=
b
log

(n
)

[0,1]
O
(n

log
(n
)
log

(log
(n
)))

for
som

e
constants

a
,b
>

0
[0,1]

(D
ang

and
Lehre,2015)

χ
/n
∈
(0,ln

(1
+
2θ)/n

);
λ
∈
Ω
(log

(n
/χ

))
[0,1]

O
(λ
n
log

(1/χ
)
+
n
log

(n
)/χ

)

θ
=

1/2
−
(q/2)(1

−
q/2)−

q/2n
0 ,

(T
heorem

3.3.1)

for
any

constant
n
0 ≥

3

64

2.3. Related Work

Ta
bl

e
2.

4:
T

he
or

et
ic

al
re

su
lt

s
of

ra
nd

om
is

ed
he

ur
is

ti
c

al
go

ri
th

m
s

on
L
ea

d
in

g
O

n
es

in
th

e
on

e-
bi

t
no

is
e

m
od

el
(q
)

A
lg

or
it

h
m

P
ar

am
et

er
se

tt
in

gs
N

oi
se

le
ve

lq
E
xp

ec
te

d
ru

nt
im

e

(1
+
1)

E
A

χ
/n

=
1/
n

[0
,1
/2
]

Θ
(n

2
)
eΘ

(m
in
{q
n
2
,n
})

(S
ud

ho
lt

,2
02

1)

(1
+
1)

E
A

(r
es

am
pl

in
g)

χ
/n

=
1/
n

;m
=

4n
4
lo
g
(n
)/
15

[0
,1
]

O
(m
n
8
)

(Q
ia

n
et

al
.,

20
19

)

(1
+
λ
)

E
A

χ
/n

=
1/
n
;λ
≥

3.
42

lo
g
(n
),
λ
∈
O
(n
)

[0
,1
/2
]

O
(n2 e

O
(q
n
/
λ
)) (S

ud
ho

lt
,2

02
1)

U
M

D
A

µ
≥
c
lo
g
(n
);
λ
>

4e
(1
+
δ)
µ

fo
r

co
ns

ta
nt

s
c,
δ;

[0
,1
)

O
(n
λ
lo
g
(λ
)
+
n
2
)

(L
eh

re
an

d
P.

T
.H

.N
gu

ye
n,

20
21

)

2-
to

ur
na

m
en

t
E

A
χ
/n
∈
(0
,l
n
(1

+
2θ
)/
n
);
λ
∈
Ω
(l
og
(n
/χ

))
[0
,1
)

O
(n
λ
lo
g
(n
/χ

)
+
n
2
/χ

)

θ
=

1/
2
−
q(
1
−
q/
2)

(T
he

or
em

3.
3.

2)

65

Chapter 2. Background

Table
2.5:

T
heoreticalresults

ofrandom
ised

heuristic
algorithm

s
on

O
n
eM

a
x

in
the

bit-w
ise

noise
m

odel
(p)

A
lgorith

m
P
aram

eter
settin

gs
N

oise
level

p
E
xp

ected
ru

ntim
e

(1+
1)

E
A

χ
/n

=
1/n

O
(1/n

2)
Θ
(n

log
(n
))

(G
ießen

and
K

ötzing,2016)

χ
/n

=
1/n

O
(log

(n
)/n

2)
p
oly

(n
)

(G
ießen

and
K

ötzing,2016)

χ
/n

=
1/n

ω
(log

(n
)/n

2)
2
ω
(lo

g
(n

))
(G

ießen
and

K
ötzing,2016)

(1+
1)

E
A

(resam
pling)

χ
/n

=
1/n;

m
=
n
3
+
2
c/4

p
=

1/2
−
1/n

c
p
oly

(n
)

(Q
ian

et
al.,2019)

for
0
<
c
=

Θ
(1)

2-tournam
ent

E
A

χ
/n
∈
(0,ln

(1
+
2θ)/n

)
(0,1/2)

O (
n
(1
+
p
n
)

(1−
2
p
)
2 (
λ
log (

1χ)
+

lo
g
(n

)
χ))

θ
=

9(1/2
−
p)/ (64 √

2pn
+
16);

(T
heorem

3.3.3)

λ
∈
Ω (

1
+
p
n

(1−
2
p
)
2
log (

n
(1−

2
p
)χ))

66

2.3. Related Work

Ta
bl

e
2.

6:
T

he
or

et
ic

al
re

su
lt

s
of

ra
nd

om
is

ed
he

ur
is

ti
c

al
go

ri
th

m
s

on
L
ea

d
in

g
O

n
es

in
th

e
bi

t-
w

is
e

no
is

e
m

od
el

(p
)

A
lg

or
it

h
m

P
ar

am
et

er
se

tt
in

gs
N

oi
se

le
ve

l
p

E
xp

ec
te

d
ru

nt
im

e

(1
+
1)

E
A

χ
/n

=
1/
n

[0
,1
/(
2n

)]
Θ
(n

2
)
eΘ

(m
in
{p
n
3
,n
})

(S
ud

ho
lt

,2
02

1)

(1
+
1)

E
A

(r
es

am
pl

in
g)

χ
/n

=
1/
n
;m

=
36
n
2
c+

4
p
=
c
lo
g
(n
)/
n

12
m
·n

3
0
c+

1
(Q

ia
n

et
al

.,
20

19
)

fo
r
0
<
c
=

Θ
(1
)

χ
/n

=
1/
n
;m
∈
O
(p
ol
y
(n
))

ω
(l
og
(n
)/
n
)

eΩ
(n

)
(Q

ia
n

et
al

.,
20

19
)

2-
to

ur
na

m
en

t
E

A
χ
/n
∈
(0
,l
n
(1

+
2θ
)/
n
)

[0
,1
/3
)

O
(ne6

n
p

(1
−
3
p
)2

(λ
lo
g
(n χ

) +
n χ

))
θ
=

(1
/2
−
p)
e−

3
n
p
;

(T
he

or
em

3.
3.

4)

λ
∈
Ω
(e6

n
p

(1
−
3
p
)2
lo
g
(n χ

))

67

Chapter 2. Background

Table
2.7:

T
heoreticalresults

ofrandom
ised

heuristic
algorithm

s
on

O
n
eM

a
x

in
the

G
aussian

noise
m

odel
(σ

2)

A
lgorith

m
P
aram

eter
settin

gs
N

oise
level

σ
E
xp

ected
ru

ntim
e

(1+
1)

E
A

χ
/n

=
1/n

σ
2≤

1/(4
log

(n
))

O
(n

log
(n
))

(G
ießen

and
K

ötzing,2016)

χ
/n

=
1/n

σ
2≥

1
e
Ω
(n

)
(Q

ian
et

al.,2018)

(1+
1)

E
A

(resam
pling)

χ
/n

=
1/n;

m
=
⌈
n
σ
2

lo
g
(n

) ⌉
1
≤
σ
2∈

p
oly

(n
)

p
oly

(n
)

(Q
ian

et
al.,2018)

(µ
+
1)

E
A

χ
/n

=
1/n;

µ
∈
p
oly

(n
)

σ
≥
n
3

2
ω
(lo

g
(n

))
(Friedrich

et
al.,2015)

cG
A

K
=
ω
(σ

2 √
n
log

(n
))

σ
2
>

0
O
(K

σ
2 √
n
log

(K
n
))

(Friedrich
et

al.,2016)

A
C

O
-fp

ρ
=

o
(1/

(n
(n

+
σ
log

n
)
2
log

n
))

σ
2≥

0
O
(n

2
log

(n
)/ρ

)
(Friedrich

et
al.,2016)

V
oting

A
lgorithm

-
σ
2≥

3n
/8

O
(σ

2
log

(n
))

(R
ow

e
and

A
ishw

aryaprajna,2019)

2-tournam
ent

E
A

χ
/n

=
a
/(n

σ
);
λ
=
bσ

2
log

(n
)

σ
2≥

0
O
(σ

6n
log

(n
)
log

(log
(n
)))

for
som

e
constants

a
,b
>

0
[0,1]

(D
ang

and
Lehre,2015)

χ
/n
∈
(0,ln

(1
+
2θ)/n

);
λ
∈
Ω
(σ

2
log

(n
/χ

))
σ
2
>

0
O (σ

2λ
n
log

(1/χ
)+
σ
2n

log
(n
)/χ)

θ
=

1/(6
+
48σ

/π
)

(T
heorem

3.3.5)

68

2.3. Related Work

Ta
bl

e
2.

8:
T

he
or

et
ic

al
re

su
lt

s
of

ra
nd

om
is

ed
he

ur
is

ti
c

al
go

ri
th

m
s

on
L
ea

d
in

g
O

n
es

in
th

e
G

au
ss

ia
n

no
is

e
m

od
el

(σ
2
)

A
lg

or
it

h
m

P
ar

am
et

er
se

tt
in

gs
N

oi
se

le
ve

l
σ

E
xp

ec
te

d
ru

nt
im

e

(1
+
1)

E
A

χ
/n

=
1/
n

σ
2
≤

1/
(1
2e
n
2
)

O
(n

2
)

(G
ie

ße
n

an
d

K
öt

zi
ng

,2
01

6)

χ
/n

=
1/
n

σ
2
≥
n
2

Ω
(e
n
)

(Q
ia

n
et

al
.,

20
18

)

(1
+
1)

E
A

(r
es

am
pl

in
g)

χ
/n

=
1/
n
;m

=
⌈1
2e
n
2
σ
2
⌉

n
2
≤
σ
2
∈
p
ol
y
(n
)

O
(m
n
2
)

(Q
ia

n
et

al
.,

20
18

)

2-
to

ur
na

m
en

t
E

A
χ
/n

=
a
/(
n
σ
);
λ
=
bσ

2
lo
g
(n
)

σ
2
≥

0
O
(σ

7
n
lo
g
(n
)
+
σ
6
n
2
)

fo
r

so
m

e
co

ns
ta

nt
s
a
,b
>

0
[0
,1
]

(D
an

g
an

d
Le

hr
e,

20
15

)

χ
/n
∈
(0
,l
n
(1

+
2θ
)/
n
);
λ
∈
Ω
(σ

2
lo
g
(n
/χ

))
σ
2
>

0
O
(σ

2
λ
n
lo
g
(n
/χ

)
+
σ
2
n
2
/χ

)

θ
=

1/
(6

+
48
σ
/π

)
(T

he
or

em
3.

3.
5)

69

Chapter 2. Background

Table
2.9:

T
heoreticalresults

ofrandom
ised

heuristic
algorithm

s
on

O
n
eM

a
x

in
the

sym
m

etric
noise

m
odel

(C
,q)

A
lgorith

m
P
aram

eter
settin

gs
N

oise
p
aram

eters
E
xp

ected
ru

ntim
e

(1+
1)

E
A

(resam
pling)

χ
/n

=
1/n;A

ny
m
≥

1
A

ny
C
∈
R

;
q
=

1/2
e
Ω
(n

)
(Q

ian
et

al.,2021)

(µ
+
1)

E
A

χ
/n

=
1/n;

µ
=

3
log

(n
)

C
=

2n;
q
=

1/2
O (n

log
3(n

))
(Q

ian
et

al.,2021)

(1
+
λ
)

E
A

χ
/n

=
1/n;

λ
=

8
log

(n
)

C
=

0;
q
=

1/2
O (n

log
2(n

))
(Q

ian
et

al.,2021)

χ
/n

=
1/n;

λ
≤

log
(n
)/10

C
=

0;
q
=

1/2
e
Ω
(n

)
(Q

ian
et

al.,2021)

2-tournam
ent

E
A

χ
/n
∈
(0,ln

(1
+
2θ)/n

);
λ
∈
Ω
(log

(n
/χ

))
C
∈
R

;
q
∈
[0,1/2)

O
(λ
n
log

(1/χ
)
+
n
log

(n
)/χ

)

θ
=

1/2
−
q

(T
heorem

3.3.6)

χ
/n

>
ln
(1

+
2θ

+
o(1))/n;

λ
∈
p
oly

(n
)

C
∈
R

;
q
∈
[0,1/2)

e
Ω
(n

)
(T

heorem
3.3.8)

θ
=

1/2
−
q

(µ
,λ

)
E

A
λ
∈
Ω
(log

(n
));

(1
−
q)ζ

λ
>
µ
∈
Ω
(log

(n
))

C
≤

0;
q
∈
[0,1)

O
(λ
n
+
n
log

(n
))

χ
/n
∈ (

0,ln (
(1−

q
)λ

(1
+
δ
)µ)

/n)
and

χ
∈
Ω
(1)

(T
heorem

3.3.7)

for
any

constant
ζ
,δ
∈
(0,1)

λ
,µ
∈
log

(n
);
(1
−
q)λ

>
µ

C
≤

0;
q
∈
[0,1]

e
Ω
(n

)
(T

heorem
3.3.9)

χ
/n

>
ln (

(1−
q
)λ

µ)
/n

70

2.3. Related Work

Ta
bl

e
2.

10
:

T
he

or
et

ic
al

re
su

lt
s

of
ra

nd
om

is
ed

he
ur

is
ti

c
al

go
ri

th
m

s
on

L
ea

d
in

g
O

n
es

in
th

e
sy

m
m

et
ri

c
no

is
e

m
od

el
(C
,q
)

A
lg

or
it

h
m

P
ar

am
et

er
se

tt
in

gs
N

oi
se

p
ar

am
et

er
s

E
xp

ec
te

d
ru

nt
im

e

2-
to

ur
na

m
en

t
E

A
χ
/n
∈
(0
,l
n
(1

+
2θ
)/
n
);
λ
∈
Ω
(l
og
(n
/χ

))
C
∈
R

;q
∈
[0
,1
/2
)

O
(n
λ
lo
g
(n
/χ

)
+
n
2
/χ

)

θ
=

1/
2
−
q

(T
he

or
em

3.
3.

6)

χ
/n

>
ln
(1

+
2θ

+
o(
1)
)/
n
;λ
∈
p
ol
y
(n
)

C
∈
R

;q
∈
[0
,1
/2
)

eΩ
(n

)
(T

he
or

em
3.

3.
8)

θ
=

1/
2
−
q

(µ
,λ

)
E

A
λ
∈
Ω
(l
og
(n
))

;(
1
−
q)
ζ
λ
>
µ
∈
Ω
(l
og
(n
))

C
≤

0;
q
∈
[0
,1
)

O
(n
λ
lo
g
(n
)
+
n
2
)

χ
/n
∈
(0,

ln
((1

−
q
)λ

(1
+
δ
)µ

) /n
) an

d
χ
∈
Ω
(1
)

(T
he

or
em

3.
3.

7)

fo
r

an
y

co
ns

ta
nt
ζ
,δ
∈
(0
,1
);

λ
,µ
∈
lo
g
(n
);
(1
−
q)
λ
>
µ

C
≤

0;
q
∈
[0
,1
]

eΩ
(n

)
(T

he
or

em
3.

3.
9)

χ
/n

>
ln
((1

−
q
)λ

µ

) /n

71

Chapter 2. Background

2.3.3.2 Dynamic Optimisation

In dynamic optimisation problems, the objective function changes over time. Many rigorous

analyses of EAs and other randomised search heuristics in dynamic environments have been

published in the previous two decades. Table 2.11 summarises existing theoretical works on

dynamic problems in EC. These studies can be categorised into three types, each fulfilling

the criteria outlined in Definition 2.2.16. The first type of research aims to evaluate the

performance of algorithms optimising a dynamic function with randomly changing optima.

The criteria can be the number of evaluations when the algorithm first hits the current

optima. The second type of research is to analyse the runtime of algorithms on a dynamic

function with a global and unique optimum. The third type of study examines the ability

to track dynamic optima. This type of problem has a sequence (path) of optima and the

optimum changes over time. The algorithms need to follow the path and find and hold the

current optimal solutions before the next change; otherwise, they will get lost soon.

At the early stage of the theoretical analysis of EAs applied to dynamic optimisation,

Droste (2002, 2003) examined a simple EA, the (1+1) EA, on the dynamic version of One-

Max. In this function, each iteration generates a new optimum by flipping the last optimal

bitstring bit-wisely with probability q. They proved that the (1+1) EA “catches” an optimal

solution in polynomial time if and only if q = O (log(n)/n2). Subsequently, Kötzing et al.

(2015) broadened the analysis from bitstrings to larger alphabets. It was demonstrated that

the number of values per dimension does not impact the performance of the (1+1) EA.

Rohlfshagen et al. (2009) illustrated some counter-intuitive scenarios that provide insights

into how the dynamics of a function can influence the runtime of this simple algorithm.

Specifically, they introduced the function Magnitude, where the relocation time of the

global optimum for the (1+1) EA is less than n2 log n with high probability when the mag-

nitude of change is large, indicating efficiency. However, when the magnitude of change is

72

2.3. Related Work

small, the expected time to relocate the global optimum becomes eΩ(n), pointing to signifi-

cant inefficiency. Similarly, the expected runtime of the (1+1) EA on the Balance function

is O(n2), signifying efficiency, for high change frequencies, and is nΩ(
√
n), implying severe in-

efficiency, for low change frequencies. These findings contribute to a deeper comprehension

of dynamic optimisation.

Using a population can enhance the capability of EAs in dynamic optimisation. In a pi-

oneering work, Jansen and Schellbach (2005) conducted an analysis on a population-based

algorithm, the (1+λ) EA, though it was applied to a straightforward OneMax-variant prob-

lem in a two-dimensional lattice. More recently, Dang et al. (2017) introduced a class of dy-

namic optimisation problems to investigate the role of populations in dynamic environments.

They proved that the (1+1) EA and the RLS lose the optimal solution region with constant

probability at any generation, whereas the non-elitist population-based EAs remain within

the optimal region for a long time with probability 1− e−Ω(nε), where c, ε > 0 are constants

(Dang et al., 2017).

In certain dynamic scenarios, only using a population might be insufficient, and the in-

clusion of other mechanisms such as diversity mechanisms and parallelisation could be ben-

eficial. For instance, with the Balance function, Oliveto and Zarges (2013) rigorously

demonstrated that the original (µ+1) EA fails, yielding an exponential runtime, if the fre-

quency of change is low enough. However, a (µ+1) EA that employs a fitness-diversity

mechanism can guarantee a polynomial expected runtime irrespectively of the frequency. In

another example, Kötzing and Molter (2012) proposed the Maze function where the opti-

mum switches from 1n to 0n with n steps of change. In this scenario, each transition modifies

a single bit from the preceding “optimal” bitstring, and the interval between two successive

changes is (kn3 log(n))-generations, given a constant k > 0. The (1+1) EA fails to keep

track of and reach the final optima. On the other hand, the parallel (1+1) EA can success-

fully trace the Maze function (Lissovoi and Witt, 2017). Beyond EAs, other randomised

73

Chapter 2. Background

heuristic algorithms also hold promise for solving dynamic optimisation problems. To illus-

trate, Kötzing and Molter (2012) established that a simplified version of the Max-Min Ant

System (MMAS) ant colony optimisation (ACO) algorithm can effectively track and reach

the final optima of the Maze function.

As discussed in Section 2.3.2, the runtime of EAs on objective functions with different

structures is significantly affected by the mutation rate used. However, there is currently no

existing study that investigates the sequence of objective functions in dynamic optimisation

with varied structures. Additionally, as discussed in Section 2.3.2, two empirical studies

(Bäck and Schütz, 1996; Smith, 2001) have demonstrated that self-adaptation can respond to

changes in fitness functions, such as switching between OneMax and ZeroMax. Therefore,

using a self-adaptive parameter control mechanism to adapt the mutation rate under this

kind of dynamic is promising. However, the full extent of the advantages of self-adaptation

in dynamic optimisation problems is still not fully understood.

2.3.4 EAs on Multi-modal Landscapes

Fitness landscapes offer an abstract way to express the relationship between search points

and their corresponding fitness on fitness functions (Malan, 2021). The concept of a fitness

landscape was first introduced by (Wright, 1932). Wright depicted this idea through an

abstract, two-dimensional contour plot of fitness values, providing an intuitive illustration of

the evolutionary processes occurring in a high-dimensional space. Moreover, the application

of fitness landscapes has extended beyond the realm of biological evolution, encompassing

areas such as computational evolution, including EAs. A fitness landscape is defined as

comprising three elements (Stadler, 2002): (1) a set Sz of solutions (search points) for the

problem instance z; (2) a definition of distance (neighbourhood) on Sz, and (3) a fitness

function f : Sz → R. Replacing f with a more general objective function, these three

74

2.3. Related Work
Ta

bl
e

2.
11

:
Su

m
m

ar
y

of
th

eo
re

ti
ca

ls
tu

di
es

of
ra

nd
om

is
ed

se
ar

ch
he

ur
is

ti
cs

on
dy

na
m

ic
op

ti
m

is
at

io
n

T
yp

e
of

D
yn

am
ic

s
P

ro
b
le

m
A

lg
or

it
h
m

S
tu

d
y

O
pt

im
is

in
g

dy
na

m
ic

fu
nc

ti
on

D
yn

am
ic

O
n
eM

a
x

(D
ro

st
e,

20
02

,2
00

3)
(1

+
1)

E
A

(D
ro

st
e,

20
02

,2
00

3)

w
it

h
ra

nd
om

ly
ch

an
ge

d
op

ti
m

a
G

en
er

al
is

ed
D

yn
am

ic
O

n
eM

a
x

(K
öt

zi
ng

et
al

.,
20

15
)

(1
+
1)

E
A

(K
öt

zi
ng

et
al

.,
20

15
)

O
n
eM

a
x
-v

ar
ia

nt
in

2D
la

tt
ic

e
(J

an
se

n
an

d
Sc

he
llb

ac
h,

20
05

;W
ei

ck
er

,2
00

5)
(1

+
λ
)

E
A

(J
an

se
n

an
d

Sc
he

llb
ac

h,
20

05
)

M
ag

n
it

u
d
e

(R
oh

lfs
ha

ge
n

et
al

.,
20

09
)

(1
+
1)

E
A

(R
oh

lfs
ha

ge
n

et
al

.,
20

09
)

(1
+
1)

E
A

(R
oh

lfs
ha

ge
n

et
al

.,
20

09
)

B
a
la

n
c
e

(R
oh

lfs
ha

ge
n

et
al

.,
20

09
)

(µ
+
1)

E
A

(O
liv

et
o

an
d

Za
rg

es
,2

01
3)

O
pt

im
is

in
g

dy
na

m
ic

fu
nc

ti
on

(µ
+

1)
E

A
s

w
it

h
di

ve
rs

it
ie

s
(O

liv
et

o
an

d
Za

rg
es

,2
01

3)

w
it

h
a

gl
ob

al
op

ti
m

um
(2

+
1)

R
LS

w
it

h
di

ve
rs

ity
(O

liv
et

o
an

d
Za

rg
es

,2
01

3)

N
oi

sy
lin

ea
r

fu
nc

ti
on

(L
en

gl
er

an
d

Sc
ha

lle
r,

20
18

)
(1

+
1)

E
A

(L
en

gl
er

an
d

Sc
ha

lle
r,

20
18

)

D
yn

am
ic

B
in

V
a
l

(D
B

V
)

(L
en

gl
er

an
d

M
ei

er
,2

02
0,

20
22

)
(µ

+
1)

E
A

(L
en

gl
er

an
d

R
ie

di
,2

02
2)

2-
to

ur
na

m
en

t
E

A
(L

eh
re

an
d

Q
in

,2
02

2a
)

(1
+
1)

E
A

(K
öt

zi
ng

an
d

M
ol

te
r,

20
12

)

M
M

A
S

(K
öt

zi
ng

an
d

M
ol

te
r,

20
12

)

M
a
ze

(K
öt

zi
ng

an
d

M
ol

te
r,

20
12

)
(2

+
1)

E
A

(L
is

so
vo

i,
20

16
)

(1
+
λ
)

E
A

(L
is

so
vo

ia
nd

W
it

t,
20

17
)

P
ar

al
le

l(
1+

1)
E

A
(L

is
so

vo
ia

nd
W

it
t,

20
17

)

Tr
ac

ki
ng

dy
na

m
ic

op
ti

m
a

F
in

it
e-

al
ph

ab
et

M
a
ze

(L
is

so
vo

i,
20

16
)

(µ
+
1)

E
A

w
it

h
di

ve
rs

ity
(L

is
so

vo
i,

20
16

)

M
M

A
S*

(L
is

so
vo

i,
20

16
)

D
yn

am
ic

sh
or

te
st

pa
th

(L
is

so
vo

ia
nd

W
it

t,
20

15
)

λ
-M

M
A

S
(L

is
so

vo
ia

nd
W

it
t,

20
15

)

(κ
,ρ

)-
st

ab
le

dy
na

m
ic

fu
nc

ti
on

,e
.g

.,
(1

+
1)

E
A

(D
an

g
et

al
.,

20
17

)

M
ov

in
g

H
am

m
in

g
B

al
l(

M
H

B
)

(D
an

g
et

al
.,

20
17

)
N

on
-e

lit
is

t
E

A
s

(D
an

g
et

al
.,

20
17

)

D
yn

am
ic

m
at

ch
in

g
su

bs
tr

in
g

St
at

ic
m

ut
at

io
n-

ba
se

d
E

A
s

(T
he

or
em

5.
5.

1)

(D
SM

)
(D

efi
ni

ti
on

5.
2.

1)
(µ
,λ

)
se

lf-
ad

ap
ti

ve
E

A
(T

he
or

em
5.

4.
1)

75

Chapter 2. Background

basic elements can be used to describe landscapes in a wide range of contexts such as com-

binatorial optimisation. In the realm of fitness landscapes for optimising pseudo-Boolean

functions using mutation-only EA, Hamming distance is typically utilised. This is because

the application of Hamming distance as a metric in the fitness landscape provides a direct

mechanism to traverse the search space. In mutation-only EAs, a bit-wise mutation equates

to a transition to a neighbouring point in the Hamming shell.

The class of multi-modal functions comprises landscapes with locally optimal search point,

where a local optima search point, denoted as x̄, satisfies the condition f(x̄) ≥ f(x) for all

x ∈ Nk(x̄). Here, Nk(x̄) denotes the set of neighbouring search points. Nonetheless, x̄

is still inferior to the optimal solution x∗, i.e., f(x̄) < f(x∗). To escape local optima,

one possible method involves using a bitwise mutation operator to directly “jump” from

local optima to search points with higher fitness. This is achieved by flipping multiple bits

simultaneously. As an illustration, by setting the mutation rate χ/n = k/n in the (1+1) EA,

an optimal expected runtime of O
(
nk

kk

(
n

n−k

)n−k) can be achieved on the Jumpk function,

which is bimodal as outlined in Eq. (2.11) (B. Doerr et al., 2017). To determine this optimal

mutation rate, the mechanism of stagnation detection (Rajabi and Witt, 2022), discussed in

Section 2.3.1.2, has been proven to be helpful. However, longer optimisation time may be

necessitated if the jump distance k is extensive. For example, the runtime of the (1+1) EA

algorithm could increase exponentially if k = Θ(n) on the Jumpk function.

The application of a crossover operator can potentially shorten the expected time required

to escape local optima, a proposition initially established by Jansen and Wegener (2002).

Following this work, more detailed analysis reveals that the (µ+ 1) GA with crossover only

requires time O(n3) if the jump size k = 4 on Jumpk (Dang et al., 2018).

Contrarily, the (1+1) EA with the optimal mutation rate χ/n = k/n guarantees a runtime

of O(n4). Regarding another GA, mentioned in Section 2.3.1.2, the (1 + (λ, λ)) GA guaran-

76

2.3. Related Work

tees a O(n2.5) runtime in this specific case (Antipov et al., 2022). Nevertheless, parameter

tuning is necessary. Hevia Fajardo and Sudholt (2023) demonstrated that employing an

adaptive population size in the (1 + (λ, λ)) GA algorithm, in conjunction with a reset mech-

anism, can effectively assist in configuring the parameter settings on optimising Jumpk, as

related to the discussion in Section 2.3.1.2. This self-adjusting (1 + (λ, λ)) GA guarantees a

runtime as low as the (1+1) EA with the optimal mutation rate.

Recently, it has been proven that non-elitism can facilitate the escape from local optima.

Non-elitist EAs can “jump” a large Hamming distance. But they can potentially also maintain

less fit individuals in the population, allowing the population to cross a fitness valley, which is

a set of search points surrounded by higher fitness value search points. They might keep some

currently low but potentially high fitness individuals in the population and optimise them

“smoothly”. A tunable problem class SparseLocalOpt was proposed to describe a kind of

fitness landscapes with sparse deceptive regions (sparse local optima) and dense fitness valleys

(Dang et al., 2021b). Informally, every search point in a dense set has many neighbours in

that set, and every search point in a sparse set has few members in any direction. The formal

definition of the SparseLocalOpt problem class is given in Definitions 1-4 in (Dang et al.,

2021b). Dang et al. (2021b) show that EAs with a non-linear selection and a sufficiently high

mutation rate, i.e., close to the error threshold, can cope with sparse local optima. Non-

linear selection is a type of non-elitist selection, in which the probability of each individual

to be selected is based on its rank in the population, e.g., tournament selection. Typically,

the fitter individual has a higher probability to be selected, but the worse individual still

has some chance to be chosen. From their analysis, non-linear selection and sufficiently high

mutation rates can limit the percentage of “sparse” local optimal individuals in the population

by choosing a sufficiently high mutation rate. The reason is that the sparse local optimal

individuals can have a higher chance to be selected but can only survive a small percentage

of such individuals after mutation, while the dense fitness valley individuals may have less

77

Chapter 2. Background

chance of being selected but can have higher chance of surviving mutation. However, the

performance of the non-elitist EA depends critically on choosing the “right” mutation rate,

which should be sufficiently high but below the error threshold. Moreover, finding such a

mutation rate might be difficult or infeasible for some problem instances with not too sparse

local optima.

78

2.3. Related Work

79

80

Chapter Three

Fixed Parameter Settings

in Uncertain Environments

Authors: Per Kristian Lehre and Xiaoyu Qin

This chapter is based on the following publications:

More Precise Runtime Analyses of Non-elitist Evolutionary Algorithms in Uncertain

Environments (Lehre and Qin, 2021, 2022a) which are published in Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO’21) and Algorithmica (2022).

81

Chapter 3. Fixed Parameter Settings in Uncertain Environments

3.1 Introduction

Real-world applications often involve “uncertain” objectives, i.e., where optimisation algo-

rithms observe objective values as a random variables with positive variance. In the past

decade, several rigorous analysis results for evolutionary algorithms (EAs) on discrete prob-

lems show that EAs can cope with low-level uncertainties, i.e. when the variance of the

uncertain objective value is small. Previous work showed that a large population combined

with a non-elitist selection mechanism is a promising approach to handle high levels of un-

certainty. However, the population size and the mutation rate can dramatically impact the

performance of non-elitist EAs, and the optimal choices of these parameters depend on the

level of uncertainty in the objective function. The performance and the required param-

eter settings for non-elitist EAs in some common objective-uncertainty scenarios are still

unknown.

In this chapter, we theoretically analyse the runtime of non-elitist EAs with 2-tournament

and (µ, λ) selection in several uncertain settings. For the 2-tournament EA, we first use the

level-based theorem (Corus et al., 2018) to derive a general theorem in uncertain environ-

ments. Then we apply this general theorem to obtain upper bounds of runtimes on OneMax

and LeadingOnes in prior and posterior noise models, i.e., one-bit, bit-wise, Gaussian and

symmetric noise models. In noisy settings, our analyses are more extensive and precise

than previous analyses of non-elitist EAs (Dang and Lehre, 2015). We provide more precise

guidance on how to choose the mutation rate and the population size as a function of the

level of uncertainty. We also use the negative drift theorem for populations (Lehre, 2010) to

show that a too high mutation rate relative to the noise level leads to an exponentially low

probability to find the optimum within exponential time. For the (µ, λ) EA, we analyse the

runtime under symmetric noise for the first time. Similarly, we provide guidance on how to

choose the mutation rate, the selective pressure and the population size as a function of the

82

3.2. 2-tournament EA in Uncertain Environments

noise level. We also show that too low selective pressure, i.e., low reproductive rate λ/µ, and

too high mutation rate according to the noise level lead to inefficient optimisation. Overall,

in several noisy settings, we prove that non-elitist EAs outperform the current state of the

art results (see Tables 2.3-2.10). Finally, we prove for the first time that non-elitist EAs can

optimise the DBV problem in expected polynomial time.

The chapter is structured as follows: Section 3.2 provides a general theorem for analysing

non-elitist EAs (Algorithm 3) with 2-tournament selection (Algorithm 5) in uncertain en-

vironments. In Section 3.3, we consider four noise models. We prove that the expected

runtime of the 2-tournament EA on OneMax and LeadingOnes under one-bit, bit-wise

and Gaussian noise are polynomial for appropriate parameter settings in Sections 3.3.1, 3.3.2

and 3.3.3, respectively. In Section 3.3.4, we show that non-elitist EAs with 2-tournament

and (µ, λ) selection (Algorithm 6) can find the optimum of OneMax and LeadingOnes

under symmetric noise in expected polynomial time if using appropriate parameter settings,

otherwise runtimes are exponential. Section 3.4 then shows the runtime analysis for the

2-tournament EA on the DBV function. Finally, Section 3.5 concludes the chapter.

3.2 2-tournament EA in Uncertain Environments

In this section, we introduce a general result (Theorem 3.2.1) which is an upper bound of

the expected runtime of the 2-tournament EA in uncertain environments. The key step is to

estimate the probability of the “real” fittest individual being selected from x1 and x2 in line 3

of Algorithm 5. In an uncertainty-free case, the fittest individual is selected with probability

1. In uncertain environments, condition (C2) of Theorem 3.2.1 is satisfied if the probability

that the truly fitter individual is selected is greater than 1/2. We call this probability minus

1/2 fitness bias. This property of an uncertain problem decides how small the mutation

83

Chapter 3. Fixed Parameter Settings in Uncertain Environments

rate should be set, how large the population size should be and how fast the algorithm can

achieve the optimum. We summarise fitness biases in some noisy scenarios in Lemma 3.2.1.

Note that the concept of fitness bias only describes a property of an uncertainty model for

2-tournament selection.

The general theorem for the 2-tournament EA is derived from the level-based theorem

(Theorem 2.2.1). Condition (C1) is to estimate a lower bound of the probability of “level

upgrading”, i.e., producing an individual in level j+1 after mutation of an individual in level

j. Condition (C2) shows the fitness bias in uncertain environments. Condition (C3) states

the required population size. Finally, we can get an upper bound for the runtime.

Theorem 3.2.1. Let (A0, A1 . . . Am) be a fitness partition of a finite state space X . Let

T := min{2tλ | |Pt ∩ Am| > 0} be the first point in time that the elements of Am appear in

Pt of the 2-tournament EA with noisy function fn(x) and mutation rate χ/n. If there exist

h0, h1, ..., hm−1 and θ ∈ (0, 1/2], and where χ ∈ (0, ln(1 + 2θζ)) for an arbitrary constant

ζ ∈ (0, 1), such that, for an arbitrary constant ξ ∈ (0, 1/16),

(C1) for all j ∈ [0..m− 1],

Pr(y ∈ A≥j+1 | z ∈ Aj) ≥ hj,

(C2) for all j ∈ [0..m− 2], and all search points x1 ∈ A≥j+1 and x2 ∈ A≤j, it follows

Pr (fn(x1) > fn(x2)) +
1

2
Pr (fn(x1) = fn(x2)) ≥

1

2
+ θ,

(C3) and the population size λ ∈ N satisfies

λ >
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
,

then

E[T] <
16 (1 + o(1))

θ2ξ(1− ζ)2
m−1∑
j=0

(
λ ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2hj

)
.

84

3.2. 2-tournament EA in Uncertain Environments

Proof. We use the level-based theorem (Theorem 2.2.1) to prove Theorem 3.2.1. Firstly, we

derive some inequalities which are used later. From θ ∈ (0, 1/2], ζ ∈ (0, 1) and 0 < χ <

ln(1 + 2θζ) which are assumptions of Theorem 3.2.1, we obtain

eχ < 1 + 2θζ (3.1)

(1 + 2θ)− eχ > 2θ(1− ζ). (3.2)

Then we define ε and γ0 which are used later. Let constant ε :=
(
1 +

√
1− 4

√
ξ
)
/2, and

we know that ε ∈ (1/2, 1) by ξ ∈ (0, 1/16). We define γ0 := (1+2θ)−exp(χ)
2θ

(1−ε). By Eq. (3.2),

we know that

γ0 =
(1 + 2θ)− eχ

2θ
(1− ε) > 2θ(1− ζ)(1− ε)

2θ
= (1− ζ)(1− ε). (3.3)

We first show that condition (G2) of Theorem 2.2.1 holds. We define the “current level”

to be the highest level j ∈ [0..m − 1] such that there are at least γ0λ individuals in level

j or higher, and there are fewer than γ0λ individuals in level j + 1 or higher. Following

condition (G2) of Theorem 2.2.1, we assume that the current level is j ≤ m − 2, which

means that there are at least γ0λ individuals of the population Pt in A≥j, and at least γλ

but less than γ0λ individuals in A≥j+1. Let x1 and x2 be the individuals selected from the

population Pt in lines 1 and 2 of 2-tournament selection (Algorithm 5), z be the solution

after comparison in line 3 of 2-tournament selection (Algorithm 5), and y be the solution

after mutating corresponding to line 4 of Algorithm 3.

Now we estimate a lower bound on the probability that the offspring y is still in A≥j+1.

By the law of total probability, Pr(y ∈ A≥j+1) ≥ Pr(z ∈ A≥j+1) · Pr(y ∈ A≥j+1|z ∈ A≥j+1).

The probability of selecting an individual z which is in A≥j+1 via binary tournament is

composed of two cases. The first case is both x1 and x2 which are selected in lines 1 and 2 of

Algorithm 5 are in A≥j+1 whose probability is at least γ2. The second case is that x1 or x2

is evaluated to be in A≥j+1, whereas the other is evaluated to be in A≤j. In this case, noise

85

Chapter 3. Fixed Parameter Settings in Uncertain Environments

leads to incorrect comparison in line 3 of Algorithm 5 with some probability. Let S be the

event of a successful comparison, i.e. the better individual of x1 and x2 is exactly selected

from line 3 of Algorithm 5. Hence, the second case occurs with probability 2(1− γ)γ Pr(S).

Then, Pr(z ∈ A≥j+1) ≥ γ2 + 2(1− γ)γ Pr(S).

To estimate a lower bound for Pr(S), we assume without loss of generality x1 ∈ A≥j+1

and x2 ∈ A≤j. Then, by condition (C2),

Pr(S) = Pr(fn(x1) > fn(x2)) +
1

2
Pr(fn(x1) = fn(x2))

≥ 1

2
+ θ.

To estimate a lower bound for Pr(y ∈ A≥j+1 | z ∈ A≥j+1), we only consider the case that

the mutation operator does not flip any bits, then by Lemma A.2.5 and Lemma A.2.4,

Pr(y ∈ A≥j+1 | z ∈ A≥j+1) ≥
(
1− χ

n

)n
≥ e−χ

(
1− χ2

n

)
≥ e−χ

(
1− 2θ

n

)

for all n > 1.

Overall, we can get a lower bound for Pr(y ∈ A≥j+1) by plugging in Pr(z ∈ A≥j+1),

Pr(y ∈ A≥j+1|z ∈ A≥j+1) and Pr(S),

Pr(y ∈ A≥j+1) >
(
γ2 + 2(1− γ)γ Pr(S)

)
e−χ

(
1− 2θ

n

)
≥
(
γ2 + 2(1− γ)γ

(
1

2
+ θ

))
e−χ

(
1− 2θ

n

)
≥ γ (1 + 2θ − 2θγ0) e

−χ
(
1− 2θ

n

)

86

3.2. 2-tournament EA in Uncertain Environments

by the definition of γ0 = (1+2θ)−exp(χ)
2θ

(1− ε),

= γ (1 + 2θ − (1 + 2θ − eχ) + (1 + 2θ − eχ) ε) e−χ
(
1− 2θ

n

)
= γ

(
1 + (1 + 2θ − eχ) εe−χ

)(
1− 2θ

n

)

letting δ := (1 + (1 + 2θ − eχ) εe−χ) (1− 2θ/n)− 1,

= γ(1 + δ). (3.4)

Now we prove that δ > 0, where

δ =
(
1 + (1 + 2θ − eχ) εe−χ

)(
1− 2θ

n

)
− 1

by Eq. (3.1),

>
(
1 + 2θe−χε(1− ζ)

)(
1− 2θ

n

)
− 1

= 2θe−χε(1− ζ)− 2θ

n

(
1 + 2θe−χε

)
+

4θ2e−χεζ

n

> 2θe−χε(1− ζ)− 6θ

n

= θ

(
2e−χε(1− ζ)− 6

n

)

by Eq. (3.1), we have eχ < 1 + 2θζ < 1 + 2θ < 2,

> θ

(
ε(1− ζ)− 6

n

)
= θε(1− ζ) (1− o(1)) . (3.5)

Thus, we get δ > 0 so condition (G2) of Theorem 2.2.1 holds from Eq. (3.4).

To verify condition (G1), we estimate the probability of sampling an individual beyond

the current level of the population. We assume there are at least γ0λ individuals in A≥j

87

Chapter 3. Fixed Parameter Settings in Uncertain Environments

where j ∈ [0..m− 1]. We only consider the case that the selected individuals are both in Aj

in lines 1 and 2 of Algorithm 5, and the individual increases its level after mutation,

Pr(y ∈ A≥j+1) ≥ γ20 Pr(y ∈ A≥j+1 | z ∈ A≥j)

≥ γ20hj =: zj.

Condition (G3) requires the population size to satisfy

4

γ0δ2
ln

(
128(m+ 1)

min{zj}δ2

)
=

4

γ0δ2
ln

(
128(m+ 1)

γ20 min{hj}δ2

)
by Eq. (3.3) and (3.5),

<
4 (1 + o(1))

(1− ζ)(1− ε) (θε(1− ζ))2
· ln

(
128(m+ 1) (1 + o(1))

(1− ζ)2(1− ε)2 (θε(1− ζ))2min{hj}

)

=
4 (1 + o(1))

θ2ε2(1− ε)(1− ζ)3
ln

(
128(m+ 1)

θ2ε2(1− ε)2(1− ζ)4min{hj}

)
<

4 (1 + o(1))

θ2ε2(1− ε)2(1− ζ)4
ln

(
128(m+ 1)

θ2ε2(1− ε)2(1− ζ)4min{hj}

)
because ε2(1− ε)2 = ξ by the definition of ε =

(
1 +

√
1− 4

√
ξ
)
/2,

<
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
< λ.

Therefore, condition (C3) of Theorem 3.2.1 guarantees that the population size satisfies

condition (G3) of Theorem 2.2.1.

Finally, all conditions of Theorem 2.2.1 hold and the expected time (the reevaluation

strategy is taken into account) to reach the optimum is no more than

E[T] ≤ 2 · 8
δ2

m−1∑
j=0

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)

<
16

δ2

m−1∑
j=0

(
λ ln

(
6

zj

)
+

1

zj

)

≤ 16

δ2

m−1∑
j=0

(
λ ln

(
6

γ20hj

)
+

1

γ20hj

)

88

3.2. 2-tournament EA in Uncertain Environments

by Eq. (3.3) and (3.5),

<
16 (1 + o(1))

θ2ε2(1− ζ)2
m−1∑
j=0

(
λ ln

(
6

(1− ε)2(1− ζ)2hj

)
+

1/hj
(1− ε)2(1− ζ)2

)

<
16 (1 + o(1))

θ2ε2(1− ε)2(1− ζ)2
m−1∑
j=0

(
λ ln

(
6

ε2(1− ε)2(1− ζ)2hj

)
+

1/hj
ε2(1− ε)2(1− ζ)2

)

=
16 (1 + o(1))

θ2ξ(1− ζ)2
m−1∑
j=0

(
λ ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2hj

)
.

In Lemma 3.2.1, we show fitness biases of OneMax and LeadingOnes functions in the

one-bit, the bit-wise, the Gaussian and the symmetric noise models.

Lemma 3.2.1. Let Aj := {x ∈ {0, 1}n|f(x) = j} for all j ∈ [0..n] be a partition of {0, 1}n.

Let x1 and x2 be two individuals in A≥j+1 and A≤j respectively, where j ∈ [0..n − 2], then

θ1 ≤ Pr
(
fn(x1) > fn(x2)) +

1
2
Pr(fn(x1) = fn(x2)

)
− 1/2 ≤ θ2 where

(a) θ1 = 1/2 − q/2(1 − q/2) − q/(2n0) for q ∈ [0, 1) and n0 ∈ [3,∞) on OneMax in the

one-bit noise model (q),

(b) θ1 = 1/2− q(1− q/2) for q ∈ [0, 1) on LeadingOnes in the one-bit noise model (q),

(c) θ1 =
9(1/2−p)

64
√
2pn+16

for p ∈ (0, 1/2) on OneMax in the bit-wise noise model (p),

(d) θ1 = (1/2− 3p/2) e−3np for p ∈ [0, 1/3) on LeadingOnes in the bit-wise noise model

(p), and

(e) θ1 = 1/(6 + 48σ/π) for σ > 0 on OneMax and LeadingOnes in the Gaussian noise

model (σ2).

(f) θ1 = θ2 = 1/2− q for any C ∈ R and q ∈ [0, 1/2) on OneMax and LeadingOnes in

the symmetric noise model (C, q).

89

Chapter 3. Fixed Parameter Settings in Uncertain Environments

Proof. Let E be the event that fn(x1) > fn(x2) or individual x1 is selected uniformly from

{x1, x2} if fn(x1) = fn(x2), then Pr(E) = Pr(fn(x1) > fn(x2)) +
1
2
Pr(fn(x1) = fn(x2)).

Now we derive the fitness bias in different cases.

(a) To estimate a lower bound for Pr(E) on the OneMax problem in the one-bit noise

model (q), we pessimistically assume that x1 ∈ Aj+1 and x2 ∈ Aj. Then we say that x1

“wins” if the event E happens, and we distinguish between four cases:

• Let E00 be the event that there is no noise, and x1 wins, then Pr(E00) = (1− q)2.

• Let E01 be the event that there is no noise in x1 and noise in x2, and x1 wins, then

Pr(E01) ≥ (1− q)q
((
1− j

n

)
1
2
+ j

n

)
= q(1− q)

(
j
2n

+ 1
2

)
.

• Let E10 be the event that there is noise in x1 and no noise in x2, and x1 wins, then

Pr(E10) ≥ q(1− q)
(
j+1
n
· 1
2
+
(
1− j+1

n

))
= q(1− q)

(
− j

2n
− 1

2n
+ 1
)
.

• Let E11 be the event that there is noise in x1 and x2, and x1 wins. There are two

situations leading x1 to win:

1. The noise flips one of the j + 1 1-bits of x1 and one of the j 1-bit of x2.

2. The noise flips one of n− (j + 1) 0-bits of x1.

Thus,

Pr(E11) ≥ q2
(
j + 1

n
· j
n
+

(
1− j + 1

n

))
=

(
(j + 1)(j − n)

n2
+ 1

)
q2

since (j + 1)(j − n) achieves the minimum when j = (n− 1)/2,

≥
(
3

4
− 1

2n

)
q2.

90

3.2. 2-tournament EA in Uncertain Environments

By combining all four cases above, we obtain

Pr(E) ≥ Pr(E00) + Pr(E01) + Pr(E10) + Pr(E11)

≥ (1− q)2 + q(1− q)
(
j

2n
+

1

2

)
+ q(1− q)

(
− j

2n
− 1

2n
+ 1

)
+

(
3

4
− 1

2n

)
q2

= 1− q

2
+
q2

4
− q

2n

=
1

2
+

1

2
− q

2

(
1− q

2

)
− q

2n

≥ 1

2
+

1

2
− q

2

(
1− q

2

)
− q

2n0

=
1

2
+ θ

(b) To estimate a lower bound for Pr(E) on the LeadingOnes problem in the one-bit noise

model (q), we pessimistically assume that x1 ∈ Aj+1 and x2 ∈ Aj. We also pessimistically

assume that the suffix of x1, i.e. the bits after the (j + 2)-th position, are all 0-bits, and the

suffix of x2, i.e. the bits after the (j + 1)-th position, are all 1-bits, which is the worst case

because if the noise flips the (j +1)-th bit in x2, then x2 will have the maximal noisy fitness

n. We say that x1 “wins” if the event E happens, then we distinguish between four cases to

estimate Pr(E):

• Let E00 be the event that there is no noise, and x1 wins, then Pr(E00) = (1 − q)2 =

q2 − 2q + 1.

• Let E01 be the event that there is no noise in x1 and noise in x2, and x1 wins. By

the assumption of x2, x1 only fails if noise flips the only 0-bit in x2. Thus, Pr(E01) ≥

(1− q) · q · (1− 1/n) = − (1− 1/n) q2 + (1− 1/n) q.

• Let E10 be the event that there is noise in x1 and no noise in x2, and x1 wins. Unless

any of the first j + 1 1-bits of x1 is flipped, x1 wins. Therefore, Pr(E10) ≥ q · (1− q) ·

(1− (j + 1)/n) = − (1− (j + 1)/n) · q2 + (1− (j + 1)/n) q.

91

Chapter 3. Fixed Parameter Settings in Uncertain Environments

• Let E11 be the event that there is noise in x1 and x2, and x1 wins. Because j = n− 2

is a special case, we first estimate the probability Pr(E11) when j ≤ n− 3. There are

four situations leading x1 to win:

1. The noise does not flip the first j + 1 1-bits of x1, and does not flip the 0-bit of

x2.

2. The noise flips the i-th 1-bits of x1 where i ≤ j+1, and flips one of the first i− 1

1-bits of x2,

3. The noise flips the same bit-position in the first j 1-bits of x1 and x2 (tie and half

chance to win).

4. The noise flips the (j + 1)-th 1-bit of x1, and does not flip the first j 1-bits of x2

(tie and half chance to win).

Thus,

Pr(E11) ≥ q2

((
1− j + 1

n

)(
1− 1

n

)
+

j+1∑
i=2

(
i− 1

n
· 1
n

)
+

j

2n2
+

1

2n

(
1− j + 1

n

))

=
(
j2/2− (n− 3/2) j + (n− 1)(2n− 1)/2

) q2
n2

since j2/2− (n− 3/2)j+(n− 1)(2n− 1)/2 is monotone decreasing as j increases when

j ≤ n− 3/2, Pr(E11) achieves the minimum if j = n− 3,

≥ 1

2

(
1 +

1

n2

)
q2

>
q2

2
.

Then we estimate Pr(E11) in the special case j = n−2. Since both x1 and x2 have one

0-bit to the optimum, i.e. x1 has only one 0-bit in the last position and x2 has only

one 0-bit in the penultimate position, there are five situations to leading x1 to win:

1. The noise flips the i-th 1-bits of x1 where i ≤ n− 1, and flips one of the first i− 1

1-bits of x2.

92

3.2. 2-tournament EA in Uncertain Environments

2. The noise flips the same bit-position in the first n− 2 1-bits of x1 and x2 (tie and

half chance to win).

3. The noise flips the last 0-bits of x1, and does not flip the 0-bit of x2.

4. The noise flips both the 0-bits of x1 and x2 (tie and half chance to win).

5. The noise flips the (n − 1)-th 1-bit of x1, and flips the last 0-bits of x2 (tie and

half chance to win).

Thus,

Pr(E11) ≥ q2

(
n−1∑
i=2

(
i− 1

n
· 1
n

)
+
n− 2

2n2
+

1

n

(
1− 1

n

)
+

1

2n2
+

1

2n2

)
=
q2

2
.

Therefore, we obtain Pr(E11) ≥ q2/2 for all j ≤ n− 2.

By combining all four cases above and j ≤ n− 2, we obtain

Pr(E) ≥ Pr(E00) + Pr(E01) + Pr(E10) + Pr(E11)

≥ 1− j + 2

n
q +

(
j + 2

n
− 1

)
q2 +

q2

2

≥ 1− j + 2

n
(1− q)q − q2 + q2

2

≥ 1− (1− q)q − q2 + q2

2

= 1− q + q2

2

=
1

2
+

1

2
− q(1− q

2
)

=
1

2
+ θ.

(c) To estimate a lower bound for Pr(E) on the OneMax problem in the bit-wise noise

model (p), we pessimistically assume that x1 ∈ Aj+1 and x2 ∈ Aj, such that f(x1) = f(x2)+1.

There exists at least one bit-position i, such that x1 has a 1-bit in position i and x2 has a 0-bit

in position i. The remaining bits of x1 and x2 have the same number of 1-bits. Therefore,

93

Chapter 3. Fixed Parameter Settings in Uncertain Environments

the bits after noise of x1 and x2 in position i decide the outcome of the fitness comparison.

Let x′1 and x′2 be two substrings obtained by excluding position i from x1 and x2 respectively.

Since each bit is flipped independently, we know that fn(x′1), fn(x′2) ∼ Bin (n− 1− j, p) +

Bin (j, (1− p)) which are Poisson-binomially distributed random variables with variance σ2 =

(1−p)p(n−1). Then we apply Lemma A.2.10 with σ =
√

(1− p)p(n− 1) ≤ √pn and d = 2

to obtain a lower bound for

Pr(fn(x′1) = fn(x′2)) ≥
(1− 1/22)2

2 · 2
√
2pn+ 1

≥ 9

64
√
2pn+ 16

. (3.6)

By symmetry, we know that Pr(fn(x′1) > fn(x′2)) = Pr(fn(x′1) < fn(x′2)). Let a =

Pr(fn(x′1) = fn(x′2)) and b = Pr(fn(x′1) > fn(x′2)), then we obtain a = 1− 2b. Thus,

Pr(E) = b+ a

(
(1− p)2 + 2 · 1

2
· p(1− p)

)
=

1

2
(1− a) + a · (1− p)

=
1

2
+

(
1

2
− p
)
a

by Eq. (3.6),

≥ 1

2
+

9 (1/2− p)
64
√
2pn+ 16

=
1

2
+ θ.

(d) To estimate a lower bound for Pr(E) on the LeadingOnes problem in the bit-wise

noise model (p), we pessimistically assume that x1 ∈ Aj+1 and x2 ∈ Aj. We also pessimisti-

cally assume that the suffix of x1, i.e. the bits after the (j+2)-th position, are all 0-bits, and

the suffix of x2, i.e. the bits after the (j+1)-th position, are all 1-bits, which is the worst case

since the noise flipping (j + 1)-th bit of x2 to achieve the optimum which leads to incorrect

comparison while the noise only can at most increase 1 fitness for x1. We distinguish between

three cases to estimate Pr(E):

94

3.2. 2-tournament EA in Uncertain Environments

• Let E0 be the event that fn(x1) ≥ j +1 and fn(x2) ≤ j, then Pr(E0) = (1− p)j+1(1−

p) + (1− p)j+1p (1− (1− p)j) = (1− p(1− p)j) (1− p)j+1.

• Let E1i be the event that fn(x1) = i and fn(x2) ≤ i−1 for any i ∈ [1, j], then Pr(E1) =∑j
i=1 Pr(E1i) =

∑j
i=1

(
p(1− p)i · (1− (1− p)i)

)
= p

(∑j
i=1(1− p)i −

∑j
i=1(1− p)2i

)
,

by the sum of a geometric series,

Pr(E1) = p

(
1− (1− p)j+1

1− (1− p)
− 1− (1− p)2(j+1)

1− (1− p)2

)
=

1

2
− p

2(2− p)
− (1− p)j+1 +

1

2− p
(1− p)2(j+1).

• Let E2i be the event that fn(x1) = i and fn(x2) = i for any i ∈ [0, j] then x1 is selected

uniformly, then

Pr(E2) =
1

2

j∑
i=0

Pr(E2i)

=
1

2

(
j−1∑
i=0

p2(1− p)2i + p(1− p)(1− p)2j
)

since p < 1/3,

≥ 1

2

j∑
i=0

p2(1− p)2i

by the sum of a geometric series,

=
1

2
p2
(
1− (1− p)2(j+1)

1− (1− p)2

)
=

p

2(2− p)
− p

2(2− p)
(1− p)2(j+1).

95

Chapter 3. Fixed Parameter Settings in Uncertain Environments

By combining all three cases above, we obtain

Pr(E) ≥ Pr(E0) + Pr(E1) + Pr(E2)

=
(
1− p(1− p)j

)
(1− p)j+1 +

1

2
− p

2(2− p)
− (1− p)j+1

+
1

2− p
(1− p)2(j+1) +

p

2(2− p)
− p

2(2− p)
(1− p)2(j+1)

=
1

2
+

(1− p)2(j+1)

2− p
− p

2(2− p)
(1− p)2(j+1) − p(1− p)2j+1

=
1

2
+

1

2
(1− p)2j+2 − p(1− p)2j+1 =

1

2
+

(
1

2
− 3

2
p

)
(1− p)2j+1

by
(
(1− x)1/x−1

)y ≥ e−y (see Lemma A.2.6),

≥ 1

2
+

(
1

2
− 3

2
p

)
e−(2j+1) p

1−p

>
1

2
+

(
1

2
− 3

2
p

)
e−2(j+2) p

1−p

by 0 ≤ j ≤ n− 2 and p ∈ [0, 1/3),

≥ 1

2
+

(
1

2
− 3

2
p

)
e−3np

≥ 1

2
+ θ.

(e) To estimate a lower bound for Pr(E) on the OneMax and LeadingOnes problems

in the Gaussian noise model (σ2), we pessimistically assume that x1 ∈ Aj+1 and x2 ∈ Aj.

Let X ∼ N (0, 2σ2) be a random variable, then

Pr(E) ≥ Pr(fn(x1)− fn(x2) > 0) = Pr(X > −1) = Pr(X < 1)

96

3.2. 2-tournament EA in Uncertain Environments

by Lemma A.2.9 with x = 1 and standard deviation is
√
2σ,

> 1− 1/

√
π/(
√
2
√
2σ) + 4

=

(
1−

(
1/
√
π/(2σ) + 4

)2)
/
(
1 + 1/

√
π/(2σ) + 4

)
>

(
π/(2σ) + 3

π/(2σ) + 4

)
/
3

2

=
1 + 6σ/π

1 + 8σ/π
· 4
3
· 1
2

=
1

2
+

1

6 + 48σ/π

=
1

2
+ θ.

(f) To estimate a lower bound for Pr(E) on OneMax and LeadingOnes in the symmetric

noise model (C, q), we assume that x1 ∈ Aa and x2 ∈ Ab where a > b. Then we say that x1

“wins” if event E happens, and we distinguish between three cases:

• If a+b > C, then x1 wins if and only if there is noise in x2, i.e, Pr(E) = (1−q)2+(1−q)q.

• If a + b = C, then x1 wins if and only if there is no noise in both x1 and x2, or there

is noise in either x1 and x2 (same fitness values, so with half chance), i.e., Pr(E) =

(1− q)2 + (1− q)q/2 + q(1− q)/2.

• If a+ b < C, then x1 wins if and only if there is no noise in x2, i.e., Pr(E) = (1− q)2+

q(1− q).

Therefore, we obtain

Pr(E) = (1− q)2 + (1− q)q = 1

2
+

1

2
− q = 1

2
+ θ.

97

Chapter 3. Fixed Parameter Settings in Uncertain Environments

3.3 Noisy Optimisation

This section provides runtime bounds for non-elitist EAs with 2-tournament and (µ, λ) selec-

tion on two classical functions in four noise models. We give the upper bound of runtime and

the appropriate parameter settings, e.g., mutation rate, which leads to efficient optimisation

for each noise model. In particular, we show for which parameter settings the non-elitist EA

is inefficient in the symmetric noise model.

3.3.1 One-bit Noise Model

Theorem 3.3.1 implies that one-bit noise does not impact the asymptotical runtime of the

2-tournament EA on OneMax if we choose a constant mutation parameter χ which satisfies

the assumption. However, we have fewer choices of the mutation rate as the level of is

noise growing. In contrast, the (1+1) EA becomes inefficient if the noise level is a constant

(see Tables 2.3 and 2.4). Compared to other EAs, e.g., ACO-fp, UMDA and (1+1) EA

(resampling), the 2-tournament EA can outperform the current state of the art results in

these two settings (see Tables 2.3 and 2.4).

Theorem 3.3.1. For any constant q ∈ [0, 1], any constant n0 ∈ [3,∞) and any χ ∈ (0, ln(1+

2θ)), where θ := 1/2−(q/2)(1−q/2)−q/(2n0), the 2-tournament EA with mutation rate χ/n

and population size λ > c log (n/χ) for a sufficiently large constant c achieves the optimum

on OneMax in the one-bit noise model (q) in expected time O (λn log(1/χ) + n log(n)/χ).

Proof. We apply Theorem 3.2.1 to prove Theorem 3.3.1. If χ ∈ (0, ln(1 + 2θ)), there ex-

ists a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ)), which satisfies the condition

in Theorem 3.2.1. We first partition the search space into levels. We use the partition

Aj := {x ∈ {0, 1}n|f(x) = j} for all j ∈ [0..n]. By constants q ∈ [0, 1] and n0 ∈ [3,∞), we

obtain 1/12 < θ ≤ 1/2 which satisfies the assumption in Theorem 3.2.1.

98

3.3. Noisy Optimisation

By case (a) of Lemma 3.2.1, we get Pr(fn(x1) > fn(x2))+
1
2
Pr(fn(x1) = fn(x2)) > 1/2+θ,

then condition (C2) of Theorem 3.2.1 holds.

To verify condition (C1), we need to estimate the probability of sampling individuals

beyond the current level of the population. We assume that there is an individual z ∈ Aj

where j ∈ [0..n− 1], and let y be obtained from z by the mutation operator with mutation

rate χ/n. We only consider the case that no 1-bits is flipped and one of 0-bits is flipped after

mutation, then by Lemma A.2.8,

Pr(y ∈ A≥j+1 | z ∈ Aj) >
(
1− χ

n

)j χ
n
(n− j)

≥ e−χ (1− o(1)) (n− j)χ/n =: hj ∈ Ω ((n− j)χ/n) .

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16) be a

constant, then

λ >
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
= O(log(n/χ)).

Condition (C3) is satisfied by λ ≥ c log(n/χ) for a sufficiently large constant c.

Finally, all conditions of Theorem 3.2.1 hold and the expected time to reach the optimum

is no more than

E[T] ≤ 16 (1 + o(1))

θ2ξ(1− ζ)2

(
λ

m−1∑
j=0

ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2
m−1∑
j=0

1

hj

)

= O

(
λ

m−1∑
j=0

ln

(
n

(n− j)χ

)
+

m−1∑
j=0

n

(n− j)χ

)

= O

(
λ ln

(
m−1∏
j=0

n

(n− j)χ

)
+ n

m−1∑
j=0

1

(n− j)χ

)

= O

(
λ ln

(
nn

n!χn

)
+ n log(n)/χ

)
using the lower bound n! > (n/e)n,

= O (λn log(1/χ) + n log(n)/χ) .

99

Chapter 3. Fixed Parameter Settings in Uncertain Environments

Theorem 3.3.2. For any constant q ∈ [0, 1) and any χ ∈ (0, ln(1 + 2θ)), where θ := 1/2−

q(1− q/2), the 2-tournament EA with mutation rate χ/n and population size λ > c log (n/χ)

for a sufficiently large constant c achieves the optimum on LeadingOnes in the one-bit

noise model (q) in expected time O (nλ log (n/χ) + n2/χ).

Proof. We apply Theorem 3.2.1 to prove Theorem 3.3.2. If χ ∈ (0, ln(1 + 2θ)), there ex-

ists a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ)), which satisfies the condition

in Theorem 3.2.1. We first partition the search space into levels. We use the partition

Aj := {x ∈ {0, 1}n|f(x) = j} for all j ∈ [0..n]. By q ∈ [0, 1), we know that 0 < θ ≤ 1
2

which

satisfies the assumption in Theorem 3.2.1.

By case (b) of Lemma 3.2.1, we get Pr(fn(x1) > fn(x2))+
1
2
Pr(fn(x1) = fn(x2)) > 1/2+θ,

then condition (C2) of Theorem 3.2.1 holds.

To verify condition (C1), we need to estimate the probability of sampling individuals

beyond the current level of the population. We assume that there is an individual z ∈ Aj

where j ∈ [0..n− 1], and let y be obtained from z by the mutation operator with mutation

rate χ/n. We only consider the case that the first 0-bit is flipped and other bits are not

flipped. By Lemma A.2.8 it follows,

Pr(y ∈ A≥j+1 | z ∈ Aj) ≥
(
1− χ

n

)n−1 χ

n
≥ e−χ (1− o(1)) χ

n
(3.7)

=: hj = Ω(χ/n) .

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16) be a

constant, then

λ >
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
= O (log (n/χ))

100

3.3. Noisy Optimisation

Condition (C3) is satisfied by λ ≥ c log (n/χ) for a sufficiently large constant c.

Finally, all conditions of Theorem 3.2.1 hold and the expected time to reach the optimum

is no more than

E[T] <
16 (1 + o(1))

θ2ξ(1− ζ)2

(
λ

m−1∑
j=0

ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2
m−1∑
j=0

1

hj

)

= O

(
λ
m−1∑
j=0

ln (n/χ) +
m−1∑
j=0

n/χ

)

= O
(
nλ log (n/χ) + n2/χ

)
.

3.3.2 Bit-wise Noise Model

The best-known result on OneMax in the bit-wise noise model is that the (1+1) EA using

a resampling strategy can achieve the optimum in expected polynomial time even if the

noise level is extremely high, i.e. p = 1/2 − 1/nb for any constant b > 0 (see Table 2.5).

By Theorem 3.3.3, we can compute that for extremely high-levels of bit-wise noise, the

2-tournament EA with mutation rate χ/n = θζ/n which is less than ln(1 + 2θζ)/n by

Lemma A.2.1, i.e., χ = d/nb+1/2 for some constant d > 0, and a sufficiently large population

size λ ∈ Ω
(
n2b+1 log(n)

)
has polynomial expected runtime O

(
n2b+2λ log(n)

)
on OneMax.

In contrast, the (1+1) EA cannot find the optimum in expected polynomial time for noise

levels q ∈ ω (log(n)/n2) (see Table 2.5).

Theorem 3.3.3. For any p ∈ (0, 1/2) and any χ ∈ (0, ln(1 + 2θ)), where θ := 9(1/2 −

p)/
(
64
√
2pn+ 16

)
, the 2-tournament EA with mutation rate χ/n and population size λ >

c(1+pn)

(1−2p)2
log
(

n
(1−2p)χ

)
for a sufficiently large constant c achieves the optimum on OneMax in

the bit-wise noise model (p) in expected time O
(
n(1+pn)

(1−2p)2

(
λ log

(
1
χ

)
+ log(n)

χ

))
.

101

Chapter 3. Fixed Parameter Settings in Uncertain Environments

Proof. We apply Theorem 3.2.1 to prove Theorem 3.3.3. If χ ∈ (0, ln(1 + 2θ)), there ex-

ists a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ)), which satisfies the condition

in Theorem 3.2.1. We first partition the search space into levels. We use the partition

Aj := {x ∈ {0, 1}n|f(x) = j} for all j ∈ [0..n]. Since p ∈ (0, 1/2) , we know that 0 < θ < 9/32

which satisfies the assumption in Theorem 3.2.1.

By case (c) of Lemma 3.2.1, we get Pr(fn(x1) > fn(x2))+
1
2
Pr(fn(x1) = fn(x2)) > 1/2+θ,

then condition (C2) of Theorem 3.2.1 holds.

To verify condition (C1), we need to estimate the probability of sampling individuals

beyond the current level of the population. We assume that there is an individual z ∈ Aj

where j ∈ [0..n− 1], and let y be obtained from z by the mutation operator with mutation

rate χ/n. We only consider the case that no 1-bits are flipped and one of the 0-bits is flipped

after mutation and by Lemma A.2.8,

Pr(y ∈ A≥j+1 | z ∈ Aj) >
(
1− χ

n

)j χ
n
(n− j)

≥
(
1− χ

n

)n χ
n
(n− j)

≥ e−χ
(
1− χ2

n

)
χ

n
(n− j)

≥ e−χ (1− o(1)) (n− j)χ/n =: hj = Ω((n− j)χ/n)

since e−χ ∈ Ω(1) for any χ ∈ O(1).

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16) be a

102

3.3. Noisy Optimisation

constant, then

λ >
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
= O

(
1

θ2
ln

(
n2

χθ2

))
= O

(
log (n/(χθ))

θ2

)
= O

(
1 + pn

(1− 2p)2
log

(
n

(1− 2p)χ

))
.

Condition (C3) is satisfied by λ ≥ c 1+pn

(1−2p)2
log
(

n
(1−2p)χ

)
for a sufficiently large constant c.

Finally, all conditions of Theorem 3.2.1 hold and the expected time to reach the optimum

is no more than

E[T] ≤ 16 (1 + o(1))

θ2ξ(1− ζ)2

(
λ
m−1∑
j=0

ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2
m−1∑
j=0

1

hj

)

= O

(
1

θ2

(
λ
m−1∑
j=0

ln

(
n

(n− j)χ

)
+

m−1∑
j=0

n

(n− j)χ

))

= O

(
1

θ2

(
λ ln

(
nn

χn · n!

)
+
n

χ
log(n)

))

using the lower bound n! > (n/e)n,

= O

(
1

θ2

(
nλ log

(
1

χ

)
+
n

χ
log(n)

))
= O

(
n(1 + pn)

(1− 2p)2

(
λ log

(
1

χ

)
+

log(n)

χ

))
.

For the LeadingOnes problem, we consider the case of the high bit-wise noise p =

b log(n)/n for any constant b > 0. By Theorem 3.3.4, the 2-tournament EA with mutation

rate χ/n = θζ/n which satisfies the condition, i.e., χ = d/n3b for some constant d > 0,

103

Chapter 3. Fixed Parameter Settings in Uncertain Environments

and a sufficiently large population size λ ∈ Ω
(
n6b log(n)

)
achieves the optimum on Leadin-

gOnes in expected time O
(
n6b+1λ log(n) + n9b+2

)
. In contrast, the expected runtime of the

(1+1) EA with a resampling strategy is 12mn30b+1 under high bit-wise noise (see Table 2.6).

Theorem 3.3.4. For any p ∈ [0, 1/3) and any χ ∈ (0, ln(1+2θ)), where θ := (1/2− 3p/2) e−3np,

the 2-tournament EA with mutation rate χ/n and population size λ ≥ c e6np

(1−3p)2
log
(
n
χ

)
for

a sufficiently large constant c achieves the optimum on LeadingOnes in the bit-wise noise

model (p) in expected time O
(

ne6np

(1−3p)2

(
λ log

(
n
χ

)
+ n

χ

))
.

Proof. We apply Theorem 3.2.1 to prove Theorem 3.3.4. If χ ∈ (0, ln(1 + 2θ)), there ex-

ists a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ)), which satisfies the condition

in Theorem 3.2.1. We first partition the search space into levels. We use the partition

Aj := {x ∈ {0, 1}n|f(x) = j} for all j ∈ [0..n]. Since p ∈ [0, 1/3), we know that 0 < θ ≤ 1/2

satisfies the assumption in Theorem 3.2.1.

By case (d) of Lemma 3.2.1, we get Pr(fn(x1) > fn(x2))+
1
2
Pr(fn(x1) = fn(x2)) > 1/2+θ,

then condition (C2) of Theorem 3.2.1 holds.

To verify condition (C1), we need to estimate the probability of sampling individuals

beyond the current level of the population. We assume that there is an individual z ∈ Aj

where j ∈ [0..n− 1], and let y be obtained from z by the mutation operator with mutation

rate χ/n. We only consider the case that the first 0-bit is flipped and other bits are not

flipped, then by Lemma A.2.8,

Pr(y ∈ A≥j+1 | z ∈ Aj) ≥
(
1− χ

n

)n−1 χ

n
≥ e−χ (1− o(1)) χ

n
=: hj

= Ω(χ/n) .

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16) be a

104

3.3. Noisy Optimisation

constant, then

λ >
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
= O

(
log (n/χ)/θ2

)
= O

(
e6np

(1− 3p)2
log

(
n

χ

))
.

Condition (C3) is satisfied by λ ≥ c e6np

(1−3p)2
log
(
n
χ

)
for a sufficiently large constant c.

Finally, all conditions of Theorem 3.2.1 hold and the expected time to reach the optimum

is no more than

E[T] <
16 (1 + o(1))

θ2ξ(1− ζ)2

(
λ
m−1∑
j=0

ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2
m−1∑
j=0

1

hj

)

= O

(
1

θ2

(
λ
m−1∑
j=0

ln

(
n

χ

)
+

m−1∑
j=0

n

χ

))

= O

(
1

θ2

(
nλ log

(
n

χ

)
+
n2

χ

))
= O

(
1

θ2

(
nλ log (n/χ) +

n2

χ

))
= O

(
ne6np

(1− 3p)2

(
λ log

(
n

χ

)
+
n

χ

))
.

3.3.3 Gaussian Noise Model

Theorem 3.3.5 implies that the 2-tournament EA with mutation rate χ/n = θζ/n, i.e.,

χ = d/σ for some constant d > 0, and a sufficiently large population size λ ∈ Ω (σ2 log(σn))

can optimise OneMax and LeadingOnes in expected polynomial time, i.e., O
(
(σ4 log2(n)+

σ3n log(n)
)

and O
(
σ4 log2(n) + σ4n2

)
respectively, even if σ2 ∈ poly(n). Similarly to opti-

misation in the bit-wise noise model, the mutation rate should be fairly conservative, and

the population size should be large enough if the noise level is extremely high, e.g., σ = nb

105

Chapter 3. Fixed Parameter Settings in Uncertain Environments

for any constant b > 0. However, the (1+1) EA using a resampling strategy and EDAs

can outperform the 2-tournament EA in these scenarios. It may be possible to increase the

tournament size to achieve a better result.

Theorem 3.3.5. For any σ > 0 and any χ ∈ (0, ln(1 + 2θ)), where θ := 1/(6 + 48σ/π), the

2-tournament EA with mutation rate χ/n and population size λ > cσ2 log(n/χ) for a suffi-

ciently large constant c achieves the optimum on OneMax and LeadingOnes in the Gaus-

sian noise model (σ2) in expected time O (σ2λn log(1/χ) + σ2n log(n)/χ) and O(σ2λn log(n/χ)+

σ2n2/χ), respectively.

Proof. We apply Theorem 3.2.1 to prove Theorem 3.3.5. If χ ∈ (0, ln(1 + 2θ)), there ex-

ists a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ)), which satisfies the condition

in Theorem 3.2.1. We first partition the search space into levels. We use the partition

Aj := {x ∈ {0, 1}n|f(x) = j} for all j ∈ [0..n]. By σ ∈ poly(n), we obtain 0 < θ < 1
6

which

satisfies the assumption in Theorem 3.2.1.

By case (e) of Lemma 3.2.1, we get Pr(fn(x1) > fn(x2))+
1
2
Pr(fn(x1) = fn(x2)) > 1/2+θ,

then condition (C2) of Theorem 3.2.1 holds.

To verify condition (C1), we need to estimate the probability of sampling individuals

beyond the current level of the population. We assume that there is an individual z ∈ Aj

where j ∈ [0..n− 1], and let y be obtained from z by the mutation operator with mutation

rate χ/n. We only consider the case that no 1-bits is flipped and one of the 0-bits is flipped

after mutation for OneMax, then by Lemma A.2.8,

Pr(y ∈ A≥j+1 | z ∈ Aj) >
(
1− χ

n

)j χ
n
(n− j)

≥ e−χ (1− o(1)) (n− j)χ/n =: hj

For LeadingOnes, we only consider the case that the first 0-bit is flipped and other bits

106

3.3. Noisy Optimisation

are not flipped, then by Lemma A.2.8,

Pr(y ∈ A≥j+1 | z ∈ Aj) ≥
(
1− χ

n

)n−1 χ

n
≥ e−χ (1− o(1)) χ

n
=: hj.

Then, we get hj ∈ Ω ((n− j)χ/n) and hj ∈ Ω (χ/n) for OneMax and LeadingOnes

respectively.

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16) be a

constant and we know that min{hj} ∈ Ω (χ/n) for both problems, then

λ >
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
= O

(
σ2 log(n/χ)

)
.

Condition (C3) is satisfied by λ ≥ cσ2 log(n/χ) for a sufficiently large constant c.

Finally, all conditions of Theorem 3.2.1 hold and the expected time on OneMax to reach

the optimum is no more than

E[T] ≤ 16 (1 + o(1))

θ2ξ(1− ζ)2

(
λ
m−1∑
j=0

ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2
m−1∑
j=0

1

hj

)

= O

(
σ2

(
λ
m−1∑
j=0

ln

(
n

(n− j)χ

)
+

m−1∑
j=0

n

(n− j)χ

))

= O

(
σ2

(
λ ln

(
nn

χnn!

)
+ n log(n)/χ

))
using the lower bound n! > (n/e)n,

= O
(
σ2 (λn log(1/χ) + n log(n)/χ)

)
,

and on LeadingOnes,

E[T] = O

(
σ2

(
λ
m−1∑
j=0

ln (σn) +
m−1∑
j=0

σn

))

= O
(
σ2λn log(n/χ) + σ2n2/χ

)
.

107

Chapter 3. Fixed Parameter Settings in Uncertain Environments

3.3.4 Symmetric Noise Model

Resampling is a common method to cope with uncertainties (Qian et al., 2019; Qian et

al., 2018). It dramatically improves the robustness of the (1+1) EA on OneMax and

LeadingOnes in the one-bit, the bit-wise and the Gaussian noise (see Tables 2.3-2.8).

However, from Table 2.9, we know that the symmetric noise model (C, q) for any C ∈ R

and q = 1/2 makes the resampling strategy inefficient, but using an elitist population can

help. This section shows that non-elitist EAs also find the optimum in expected polynomial

time if using an appropriate parameter setting. We also demonstrate a mutation rate error

threshold as a function of the noise level in the symmetric noise model. Optimisation is

efficient if the mutation rate is above the error threshold; otherwise inefficient.

3.3.4.1 Efficient Optimisation

Theorem 3.3.6 states that the 2-tournament EA with any mutation rate can optimise on

noisy OneMax and LeadingOnes functions, for the noise level q < 1/2. Theorem 3.3.7

states that the (µ, λ) EA can optimise in O (nλ) time under all level noise if we set a suf-

ficiently large population size, i.e., λ ∈ Ω (log(n)), a sufficiently large selective pressure

as measured by the reproductive rate, i.e., λ/µ > 1/ ((1− q)ζ), and a low mutation rate

χ/n ∈
(
0, ln

(
(1−q)λ
(1+δ)µ

)
/n
)

for any constant ζ, δ ∈ (0, 1) and χ ∈ Ω(1). This is due to insuf-

ficient selective pressure in 2-tournament selection in the high-level symmetric noise model.

If we increase the tournament size, i.e., select k > 2 candidate individuals from Pt in Algo-

rithm 5, it could be possible to optimise efficiently in such high level noisy functions, because

the selective pressure of the non-elitist EA with k tournament selection is approximately k

(Lehre and Yao, 2012).

Theorem 3.3.6. For any constant q ∈ [0, 1/2), and C ∈ R and any χ ∈ (0, ln(1 + 2θ)),

where θ := 1/2 − q, the 2-tournament EA with mutation rate χ/n and population size λ >

108

3.3. Noisy Optimisation

c log(n) for a sufficiently large constant c achieves the optimum on OneMax and Leadin-

gOnes in the symmetric noise model (C, q) in expected time O (λn log(1/χ) + n log(n)/χ)

and O (nλ log (n/χ) + n2/χ) respectively.

Proof. We apply Theorem 3.2.1 to prove Theorem 3.3.6. If χ ∈ (0, ln(1 + 2θ)), there ex-

ists a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ)), which satisfies the condition

in Theorem 3.2.1. We first partition the search space into levels. We use the partition

Aj := {x ∈ {0, 1}n|f(x) = j} for all j ∈ [0..n]. By q ∈ [0, 1/2), we obtain 0 < θ ≤ 1
2

which

satisfies the assumption in Theorem 3.2.1.

By case (f) of Lemma 3.2.1, we get Pr(fn(x1) > fn(x2))+
1
2
Pr(fn(x1) = fn(x2)) = 1/2+θ,

then condition (C2) of Theorem 3.2.1 holds.

To verify condition (C1), we need to estimate the probability of sampling individuals

beyond the current level of the population. We assume that there is an individual z ∈ Aj

where j ∈ [0..n− 1], and let y be obtained from z by the mutation operator with mutation

rate χ/n. We only consider the case that no 1-bits is flipped and one of the 0-bits is flipped

after mutation for OneMax, then by Lemma A.2.8,

Pr(y ∈ A≥j+1 | z ∈ Aj) >
(
1− χ

n

)j χ
n
(n− j)

≥ e−χ (1− o(1)) (n− j)χ/n =: hj ∈ Ω ((n− j)χ/n) .

For LeadingOnes, we only consider the case that the first 0-bit is flipped and other bits

are not flipped, then by Lemma A.2.8,

Pr(y ∈ A≥j+1 | z ∈ Aj) ≥
(
1− χ

n

)n−1 χ

n
≥ e−χ (1− o(1)) χ

n
=: hj = Ω(χ/n) .

Then, we get hj ∈ Ω ((n− j)χ/n) and hj ∈ Ω (χ/n) for OneMax and LeadingOnes

respectively.

109

Chapter 3. Fixed Parameter Settings in Uncertain Environments

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16) be a

constant and we know that min{hj} ∈ Ω (χ/n) for both problems, then

λ >
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
= O(log(n/χ)).

Condition (C3) is satisfied by λ ≥ c log(n/χ) for a sufficiently large constant c.

Finally, all conditions of Theorem 3.2.1 hold and the expected time on OneMax to reach

the optimum is no more than

E[T] ≤ 16 (1 + o(1))

θ2ξ(1− ζ)2

(
λ
m−1∑
j=0

ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2
m−1∑
j=0

1

hj

)

= O

(
λ
m−1∑
j=0

ln

(
n

(n− j)χ

)
+

m−1∑
j=0

n

(n− j)χ

)

= O

(
λ ln

(
m−1∏
j=0

n

(n− j)χ

)
+ n

m−1∑
j=0

1

(n− j)χ

)

= O

(
λ ln

(
nn

n!χn

)
+ n log(n)/χ

)
using the lower bound n! > (n/e)n,

= O (λn log(1/χ) + n log(n)/χ) .

and on LeadingOnes,

E[T] ≤ 16 (1 + o(1))

θ2ξ(1− ζ)2

(
λ
m−1∑
j=0

ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2
m−1∑
j=0

1

hj

)

= O

(
λ

m−1∑
j=0

ln (n/χ) +
m−1∑
j=0

n/χ

)

= O
(
nλ log (n/χ) + n2/χ

)
.

Theorem 3.3.7. For any constant q ∈ [0, 1), and C ≤ 0, any constant δ ∈ (0, 1) and

any χ ∈
(
0, ln

(
(1−q)λ
(1+δ)µ

))
and χ ∈ Ω(1), the (µ, λ) EA with mutation rate χ/n, population

110

3.3. Noisy Optimisation

size λ > c log(n) for a sufficiently large constant c and (1 − q)λ/(1 + δ) > µ ∈ Ω (log(n))

achieves the optimum on OneMax and LeadingOnes in the symmetric noise model (C, q)

in expected time O (λn+ n log(n)) and O (nλ log (n) + n2) respectively.

Proof. We use the level-based theorem (Theorem 2.2.1) to prove Theorem 3.3.7. We use the

partition Aj := {x ∈ {0, 1}n|f(x) = j} for all j ∈ [0..n] and we define γ0 := µ/λ.

We first show that condition (G2) of Theorem 2.2.1 holds. If the current level is j ≤ n−2,

then there are at least γλ individuals in level j + 1. Let ε := δ2/(1 + δ) be a constant. We

assume that there are at least γ(1− q)(1− ε)λ individuals which are in level j+1 and there

is no noise when evaluating these individuals. We will verify this assumption later. Let z be

the selected individual and y be the individual after mutating z, then

Pr(y ∈ A≥j+1) ≥ Pr(z ∈ A≥j+1) · Pr(y ∈ A≥j+1|z ∈ A≥j+1)

≥ γλ(1− ε)(1− q)
µ

(
1− χ

n

)n
by Lemma A.2.5,

≥ γλ(1− ε)(1− q)
µ

e−χ
(
1− χ2

n

)
by χ < ln

(
(1−q)λ
(1+δ)µ

)
,

> γ(1− ε)(1 + δ)(1− o(1))

by ε = δ2/(1 + δ),

= γ(1 + δ − δ2)(1− o(1))

= γ
(
1 +

(
δ − δ2

)
(1− o(1))

)
To verify condition (G1), we need to estimate the probability of sampling individuals

beyond the current level of the population if there are at least γ0λ individuals in level

111

Chapter 3. Fixed Parameter Settings in Uncertain Environments

j ∈ [0..n − 1]. We assume that there is an individual z ∈ Aj where j ∈ [0..n − 1], and let

y be obtained from z by the mutation operator with mutation rate χ/n. We only consider

the case that no 1-bit is flipped and one 0-bit is flipped after mutation for OneMax, then

by Lemma A.2.8,

Pr(y ∈ A≥j+1) = Pr(z ∈ A≥j) · Pr(y ∈ A≥j+1 | z ∈ Aj)

>
(
1− χ

n

)j χ
n
(n− j)

≥ e−χ (1− o(1)) (n− j)χ/n =: zj ∈ Ω ((n− j)χ/n) .

For LeadingOnes, we only consider the case that the first 0-bit is flipped and no other bit

is flipped, then by Lemma A.2.8,

Pr(y ∈ A≥j+1) = Pr(z ∈ A≥j) · Pr(y ∈ A≥j+1 | z ∈ Aj)

≥
(
1− χ

n

)n−1 χ

n

≥ e−χ (1− o(1)) χ
n
=: zj = Ω(1/n) .

Then, we get zj ∈ Ω ((n− j)/n) and zj ∈ Ω (1/n) for OneMax and LeadingOnes

respectively.

Then we compute the population size required by condition (G3). We know that min{zj} ∈

Ω (χ/n) for both problems, then

λ >
4λ

((δ − δ2) (1− o(1)))2 µ
ln

(
128(n+ 1)

((δ − δ2) (1− o(1)))2min{zj}

)
= O (log(n)) .

Condition (G3) is satisfied by λ ≥ c log(n) for a sufficiently large constant c.

Finally, all conditions of Theorem 2.2.1 hold and the expected time on OneMax to reach

112

3.3. Noisy Optimisation

the optimum is no more than

t0(n) ≤
8

(δ − δ2) (1− o(1))2

(
λ
m−1∑
j=0

ln

(
6 ((δ − δ2) (1− o(1)))2 λ

4 + ((δ − δ2) (1− o(1)))2 λzj

)
+

m−1∑
j=0

1

zj

)

= O (λn+ n log(n)) ,

and on LeadingOnes,

= O
(
nλ log (n) + n2

)
.

Now we verify the assumption that there are at least γ(1 − q)(1 − ε) individuals in level

j+1 and the noise does not affect the ranking if the current level is j+1 for any j ∈ [n− 2].

We refer to a sequence of 2t0(n)/λ generations as a phase, and call a phase good if for

2t0(n)/λ consecutive generations the assumption holds. Let Z ∼ Bin (γλ, (1− q)) be a

random variable, which represent the number of individuals not affected by noise in any

generation t ∈ N. By a Chernoff bound, the probability that the assumption holds in a

generation is Pr (Z ≤ γλ(1− ε)(1− q)) ≤ e−Ω(λ). By a union bound, a phase is good with

probability 1− (2t0(n)/λ) e
−Ω(λ) = Ω(1). By Markov’s inequality, the probability of reaching

a global optimum in a good phase is at least 1 − Pr (T ≥ 2t0(n)) ≥ 1 − t0(n)
2t0(n)

≥ 1 − 1
2
= 1

2
.

Hence, the expected number of phases required, each costing 2t0(n) evolutions, is O(1), and

the theorem follows.

3.3.4.2 Inefficient Optimisation

Non-elitist EAs fail when the mutation rate becomes too high Lehre, 2010. In this section,

we investigate what mutation rate is too high for non-elitist EAs in uncertain settings. We

use the negative drift theorem for populations to derive what mutation rate make non-elitist

113

Chapter 3. Fixed Parameter Settings in Uncertain Environments

EAs inefficient on OneMax and LeadingOnes (shown in Theorems 3.3.8 and 3.3.9). For 2-

tournament selection, there exists a mutation rate error threshold ln (2(1− q)) /n. Similarly,

we can find a mutation rate error threshold in (µ, λ) selection, which is ln ((1− q)λ/µ) /n.

Without uncertainty, it is well-known that error thresholds of mutation rate is ln(2)/n and

ln(λ/µ)/n for the 2-tournament EA and the (µ, λ) EA, respectively (Lehre, 2010; Lehre and

Yao, 2012). As we can see from the proofs of Theorems 3.3.8 and 3.3.9, the presence of

uncertainties can reduce the maximal reproductive rate of algorithms. Consequentially, the

error threshold of the mutation rate would be reduced. We should reduce the mutation rate

or increase the selection pressure, e.g., reduce µ in the (µ, λ) EA, as the uncertainty level is

increased to ensure efficient optimisation.

Theorem 3.3.8. For any C ∈ R and any constant q ∈ [0, 1/2), the probability that the

2-tournament EA with any population size λ = poly(n), mutation rate χ/n > ln(2(1− q) +

o(1))/n, optimises OneMax or LeadingOnes in the symmetric noise model (C, q) within

ecn generations is e−Ω(n), for some constant c > 0.

Proof. We estimate the maximal reproductive rate under noise. In each generation of the

2-tournament EA, two individuals x1 and x2 are selected uniformly at random from the

population by lines 1 and 2 of Algorithm 5, respectively. Then the fittest individual of

x1 and x2 is chosen by fitness comparison (line 3). However, the presence of noise can

lead to a failed comparison, i.e., the worse individual is selected in line 3 of Algorithm 5.

we assume without loss of generality f(x1) > f(x2). Let E be the event that fn(x1) >

fn(x2) or individual x1 is selected uniformly from {x1, x2} if fn(x1) = fn(x2), then Pr(E) =

Pr
(
fn(x1) > fn(x2)) +

1
2
Pr(fn(x1) = fn(x2)

)
. Then the maximal reproductive rate is the

114

3.4. Dynamic Optimisation

reproductive rate of the best individual, which is

α0 ≤ E[Rt(i)] = λ

(
1

λ2
+

2Pr(E)

λ

(
1− 1

λ

))
=

1

λ
+ 2Pr(E)

(
1− 1

λ

)
< 2Pr(E) +

1

λ

= 2Pr(E) + o(1)

by Lemma 3.2.1 (f), Pr(E) = 1− q,

= 2(1− q) + o(1).

Then Theorem 3.3.8 is proved by applying Theorem 2.2.1.

Theorem 3.3.9. For any constant q ∈ [0, 1], the probability that the (µ, λ) EA with any

population size λ = poly(n), mutation rate χ/n > (ln (1− q)λ/µ) /n, optimises OneMax

or LeadingOnes in the symmetric noise model (C, q) within ecn generations is e−Ω(n), for

some constant c > 0.

Proof. We first compute the maximal reproductive rate. Let x be the fittest individual in Pt

evaluated by f(x). Only if there is no noise in x, x has a chance to be selected with probability

1/µ. Then we can compute the maximal reproductive rate α0 ≤ λ
µ
(1− q) + 0 = λ

µ
(1− q).

Finally, Theorem 3.3.9 is proved by applying Theorem 2.2.1.

3.4 Dynamic Optimisation

Now we consider dynamic optimisation. First, we apply the general theorem for the 2-

tournament EA (Theorem 3.2.1) on the DBV problem and derive the runtime and the

115

Chapter 3. Fixed Parameter Settings in Uncertain Environments

parameters required. The proof idea is similar to noisy optimisation in which the critical

step is estimating a lower bound of the fitness bias.

Lengler and Schaller (2018) proved that the (1+1) EA can achieve the optimum inO
(
n log(n)

)
with standard mutation rate χ/n = 1/n on the noisy linear function which is a general case

of the DBV problem. However, there only exists a partial result for population-based EAs,

i.e., runtime when the population is initiated close to the optimum (Lengler and Meier,

2020). Theorem 3.4.1 gives for the first time the runtime from any start point on DBV for a

population-based EA. It implies that if choosing a low mutation rate, e.g., χ/n = ζ/(2n2) and

a population size λ > cn2 log(n) for a sufficiently large constant c, the 2-tournament EA can

optimise the DBV problem in O (n3λ log(n)) time. The analysis could be further improved

by estimating the maximal Hamming-distance in all pairs of individuals more precisely.

Theorem 3.4.1. For any χ ∈ (0, ln(1+ 2θ)), where θ := 1/(2n), the 2-tournament EA with

mutation rate χ/n and population size λ > cn2 log(n) for a large enough constant c achieves

the optimum on DBV in expected time O (n3λ log(1/χ) + n3 log(n)/χ).

Proof. We apply Theorem 3.2.1 to prove Theorem 3.4.1. If χ ∈ (0, ln(1 + 2θ)), there ex-

ists a constant ζ ∈ (0, 1) such that χ ∈ (0, ln(1 + 2θζ)), which satisfies the condition

in Theorem 3.2.1. We first partition the search space into levels. We use the partition

Aj := {x ∈ {0, 1}n|OM(x) = j} for j ∈ [0..n]. It is easy to see that θ satisfies the assump-

tion in Theorem 3.2.1.

We first show that condition (C2) of Theorem 3.2.1 holds. Let x1 and x2 be two individuals

in A≥j+1 and A≤j respectively, where j ∈ [0..n− 2]. Let E be the event that f t(x1) > f t(x2)

or individual x1 is selected uniformly from {x1, x2} if f t(x1) = f t(x2). The probability of

this event is Pr(f t(x1) > f t(x2)) +
1
2
Pr(f t(x1) = f t(x2)) = Pr(E).

To estimate a lower bound for Pr(E) on DBV, we pessimistically assume that x1 ∈ Aj+1

116

3.4. Dynamic Optimisation

and x2 ∈ A≤j, such that OM(x1) = OM(x2) + h where h ∈ [1, j]. We assume H(x1, x2) ≤

l + l + h = s, where s ≤ n and there exist l bit-positions that x1 has a 1-bit and x2 has a

0-bit, and there exist another l bit-positions that x1 is with 0-bit and x2 has a 1-bit, such

that x1 and x2 have the same bit in the rest of n− 2l− h positions. For the DBV problem,

the coefficients vary exponentially, thus the largest coefficient is the deciding factor for the

fitness value. We first compare the fitness in the n− 2l−h positions of x1 and x2, which are

the same in the same generation. The next largest coefficient decides the final fitness value.

Then we say that x1 “wins” if the event E happens. If the next largest coefficient is in the

l + h positions, x1 wins, else in another l positions, x2 wins. Therefore,

Pr (E) ≥ l + h

2l + h

=
l + h/2 + h/2

2 (l + h/2)

=
1

2
+

h

2(2l + h)

≥ 1

2
+

1

2(2l + h)

=
1

2
+

1

2s

since the Hamming-distance s between any pair of individuals is at most n, then

≥ 1

2
+ θ.

Condition (C2) of Theorem 3.2.1 holds. Since s ≤ n, we get the fitness bias θ ≥ 1/(2n).

To verify condition (C1), we need to estimate the probability of sampling individuals

beyond the current level of the population. We assume that there is an individual z ∈ Aj

where j ∈ [0..n− 1], and let y be obtained from z by the mutation operator with mutation

rate χ/n. For a lower bound, it suffices to only consider the case that none of the 1-bits are

117

Chapter 3. Fixed Parameter Settings in Uncertain Environments

flipped and one of 0-bits is flipped after mutation. Then, by Lemma A.2.8 it follows,

Pr(y ∈ A≥j+1 | z ∈ Aj) >
(
1− χ

n

)j χ
n
(n− j)

≥ e−χ (1− o(1)) (n− j)χ/n =: hj

= Ω

(
(n− j)χ

n

)
.

Then we compute the population size required by condition (C3). Let ξ ∈ (0, 1/16) be a

constant, then

λ >
4 (1 + o(1))

θ2ξ(1− ζ)4
ln

(
128(m+ 1)

θ2ξ(1− ζ)4min{hj}

)
= O

(
n2 log(n/χ)

)
.

Condition (C3) is satisfied by λ > cn2 log(n/χ) for a sufficiently large constant c.

Finally, all conditions of Theorem 3.2.1 hold and the expected time E[T] to reach the

optimum is no more than

E[T] ≤ 16 (1 + o(1))

θ2ξ(1− ζ)2

(
λ
m−1∑
j=0

ln

(
6

ξ(1− ζ)2hj

)
+

1

ξ(1− ζ)2
m−1∑
j=0

1

hj

)

= O

(
s2

(
λ
m−1∑
j=0

ln

(
n

(n− j)χ

)
+

m−1∑
j=0

n

(n− j)χ

))

= O

(
s2
(
λ ln

(
nn

χnn!

)
+ n log(n)/χ

))

using the bounds n! > (n/e)n, and s ≤ n,

= O
(
s2nλ log(1/χ) + s2n log(n)/χ

)
= O

(
n3λ log(1/χ) + n3 log(n)/χ

)
.

118

3.5. Conclusion

3.5 Conclusion

This chapter has derived runtime results for non-elitists EAs with 2-tournament and (µ, λ)

selection on two well-known benchmark functions, i.e., OneMax and LeadingOnes in

uncertain environments. For the one-bit, the bit-wise and the Gaussian noise models, we

improved and extended results of the non-elitist EA with 2-tournament from Dang and Lehre

(2015). We introduced the notion of fitness bias which indicates the probability that the

truly fitter individual is selected. We summarised fitness biases for 2-tournament selection

in some noisy scenarios in Lemma 3.2.1. Then we got more precise upper bounds for the

expected runtimes and also provide more precise guidance on how to choose the mutation

rate and the population size as a function of the level of noise. From Tables 2.3-2.10, we

concluded that by using an appropriate mutation parameter, i.e., χ ∈ [θ, ln(1+ 2θ)) where θ

is a function of the level of noise, and a sufficiently large population size, the 2-tournament

EA optimises OneMax and LeadingOnes in less time in expectation under one-bit and

extremely high-level bit-wise noise, than the (1+1) EA using a resampling strategy (Qian

et al., 2019; Qian et al., 2018). In some settings, such as in the Gaussian noise model, we

obtained a lower upper bound of runtimes than the ACO-fp (Friedrich et al., 2016) and a

comparable upper bound with EDAs (Friedrich et al., 2016; Lehre and P. T. H. Nguyen,

2021; Rowe and Aishwaryaprajna, 2019).

We then, for the first time, studied the performance of non-elitist EAs with two selec-

tion mechanisms, i.e., 2-tournament and (µ, λ), on OneMax and LeadingOnes in the

symmetric noise model. We also provided for the first time mutation rate error thresholds

under the symmetric noise model, which are ln (2(1− q)) /n and ln ((1− q)λ/µ) /n for the

2-tournament and the (µ, λ) selection, respectively. The noise essentially affects the maximal

reproductive rate and the error threshold of a non-elitist population. Furthermore, in these

scenarios, non-elitist EAs can outperform the known best results, i.e., for the (1+λ) EA

119

Chapter 3. Fixed Parameter Settings in Uncertain Environments

and the (µ+1) EA. Finally, we proved for the first time that with appropriate parameter

settings, non-elitist EAs can optimise the DBV problem in expected polynomial time.

In overall, we provide advice on how to choose the mutation rate, the selective pressure

and the population size (see Theorems 3.3.1-3.3.9), for non-elitist EAs on some uncertain

scenarios.

120

3.5. Conclusion

121

122

Chapter Four

Self-adaptation in Noisy Environments

Authors: Per Kristian Lehre and Xiaoyu Qin

This chapter is based on the following publication:

Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms (Lehre and

Qin, 2023b) which is published by the 17-th ACM/SIGEVO Workshop on Foundations of

Genetic Algorithms (FOGA’23).

123

Chapter 4. Self-adaptation in Noisy Environments

4.1 Introduction

Real-world optimisation often involves uncertainty, such as noise. The exact fitness value

of a search point may not be determined due to noise. As outlined in Chapter 3, we have

established that non-elitist EAs can effectively tolerate high uncertainties. This tolerance is

achieved when conditions of a sufficiently high selective pressure (reproductive rate) and a

sufficiently high population size, and a sufficiently low mutation rate, all relative to the level

of uncertainty. It is challenging to find the appropriate parameter setting if the occurrence of

noise is unpredictable (or the noise level is unknown). Self-adaptation as a parameter control

mechanism can help to configure the mutation rate in the noise-unknown environments.

However, the rigorous analysis of self-adaptation to noise is missing. Runtime analysis of

non-elitist population-based EAs can be challenging. Clearly, including self-adaptation and

noise makes the analysis even harder.

The main contribution of this chapter is the first theoretical analysis of self-adaptive EAs

in noisy environments. The rigorous runtime analysis on the LeadingOnes problem shows

that the 2-tournament EA with self-adaptation from high/low mutation rates (SA-2mr) can

guarantee the lowest expected runtime among the fixed high/low mutation rates and the

uniformly chosen mutation rate from high/low rates (uniformly mixing mutation rate, UM-

2mr), regardless of the presence of symmetric noise. The results are summarised in Table 4.1.

In addition, we extend to more types of noise, one-bit and bit-wise noise, and a more natural

self-adaptation mechanism that adapts the mutation rate from a given interval (0, 1/2] (SA)

in the empirical study. The experimental results show that self-adaptive EAs can adapt to

noise levels and outperform static EAs.

The chapter is organised as follows: Section 4.2 introduces algorithms. Sections 4.4-4.5

show limitations of using high/low and uniformly mixing mutation rates under symmetric

noise. Section 4.6 analyses the runtime of the 2-tournament EA with self-adapting mutation

124

4.1. Introduction

Table 4.1: Theoretical results of EAs on LeadingOnes under symmetric noise (C, q) (C ∈

R, constant 0 < χhigh < ln(2), χlow = a/n, λ = c log(n) where a, c > 0 are constants,

pc ∈ o(1) ∩ Ω(1/n) in 2-tour’ EA with SA-2mr)

Algorithm Noise-free Under Noise

(1+1) EA O(n2) (Droste et al., 2002) eΩ(n) † (Theorem 4.3.1)

2-tour’ EA with χhigh

n
O(n2) (Corus et al., 2018) eΩ(n) ‡ (Theorem 3.3.8)

2-tour’ EA with χlow

n
Ω(n2 log(n)) (Corollary 4.4.1) O(n3) § (Theorem 3.3.6)

2-tour’ EA with UM-2mr O(n2) (Theorem 4.5.1) eΩ(n) ‡ (Theorem 4.5.2)

2-tour’ EA with SA-2mr O(n2) (Theorem 4.6.1) O(n3) § (Theorem 4.6.2)

rates with/without noise. Section 4.7 shows empirical results. The paper concludes in

Section 4.8.

The main contribution of this chapter is the first theoretical analysis of self-adaptive EAs

in the noisy environments. The rigorous runtime analysis on the LeadingOnes problem

shows that the 2-tournament EA with self-adapting from high/low mutation rates (SA-

2mr) can guarantee the lowest runtime among the fixed high/low mutation rates and the

uniformly chosen mutation rate from high/low rates (uniformly mixing mutation rate, UM-

2mr), regardless of the presence of symmetric noise. The results are summarised in Table 4.1.

In addition, we extend to more types of noise, one-bit and bit-wise noise, and a more natural

self-adaptation mechanism that adapts the mutation rate from a given interval (0, 1/2] (SA)

in the empirical study. The experimental results show that self-adaptive EAs can adapt to

noise levels and outperform static EAs.

†For any constant noise level q ∈ (0.127107, 1/2).
‡For some constant noise level q ∈ (0, 1/2).
§For all constant noise level q ∈ (0, 1/2).

125

Chapter 4. Self-adaptation in Noisy Environments

Algorithm 13 2-tournament EA with self-adaptation
Require: Pseudo-Boolean function f : {0, 1}n → R, where n ∈ N

Require: Population size λ ∈ N.

Require: Sorting partial order ⪰P,f .

Require: Self-adapting mutation rate strategy Dmut : (0, 1/2] → Ω → (0, 1/2], where Ω is

some sample space.

Require: Initial self-adaptive population P0 ∈ Yλ.

1: for τ = 0, 1, 2, ... until termination condition met do

2: for i = 1 to λ do

3: (x1, χ1/n)← Pτ (i1) where i1 ∽ Uniform([λ]).

4: (x2, χ2/n)← Pτ (i2) where i2 ∽ Uniform([λ]).

5: if (x1, χ1/n) ⪰Pτ ,f (x2, χ2/n) then

6: (z, χ/n)← (x1, χ1/n),

7: else

8: (z, χ/n)← (x2, χ2/n).

9: Sample χ′/n ∼ Dmut(χ/n).

10: Pτ+1(i)← (y, χ′/n) where y created by mutating z with mutation rate χ′/n.

4.2 Algorithms

In this chapter, we consider three different mutation rate strategies: static, uniformly mixing

(UM-2mr) and self-adaptive (SA-2mr and SA). The static 2-tournament EA is delineated as

Algorithm 3 utilising Algorithm 6. In generation τ , we obtain a new individual by selection

and mutation. For the 2-tournament with UM-2mr (Dang and Lehre, 2016b), a mutation

rate χ/n uniformly sampled from two rates is used in each mutation in stead of using only

one rate.

In pursuit of a fair comparison, this chapter takes into consideration self-adaptive EAs

126

4.2. Algorithms

Algorithm 14 Self-adapting two mutation rates (SA-2mr) (Dang and Lehre, 2016b)
Require: Two rates χhigh > χlow > 0.

Require: Switch probability pc ∈ (0, 1).

Require: Mutation rate χ/n.

1: Set χ′/n:=


χhigh/n if χ = χlow, χlow/n if χ = χhigh with probability pc,

χ/n otherwise.
2: return χ′/n.

with 2-tournament selection. The self-adaptive EA framework is already illustrated in Algo-

rithm 7, which requires population sorting prior to selection. As highlighted in Section 2.2.5,

the reevaluation strategy is commonly used for analysis of 2-tournament selection algorithm.

This approach ensures independence for each comparison in tournament, which simplifies

the analysis. Therefore, we reformulate the self-adaptive EAs using 2-tournament selection,

as depicted in Algorithm 13. In this chapter, the comparison in a self-adaptive population is

based on the fitness-first sorting partial order which prefers a high mutation rate, as defined

in Definition 2.2.4 (b) and applied in (Case and Lehre, 2020). To self-adapt the mutation

rate, we can utilise self-adapting mutation rate strategy in (Case and Lehre, 2020) (Algo-

rithm 10), with set b := 1/A. We describe the 2-tournament EA with SA as Algorithm 13

using this strategy (Algorithm 10).

Although some studies exist on self-adapting mutation rate from the given interval (0, 1/2]

(Case and Lehre, 2020; B. Doerr et al., 2021), the involvement of noise can make run-

time analysis more challenging. Therefore, we consider a simplified version in the runtime

analysis, the 2-tournament EA with SA-2mr, which only self-adapts two mutation rates

{χhigh/n, χlow/n}. In contrast, we illustrate that the fixed high/low mutation rates and

the uniformly mixing mutation rate cannot be fast or efficient in the noisy setting. For

the sake of analysis, we re-define the self-adaptive population in this algorithm: Pτ ∈ Yλ,

where Y = {0, 1}n × {χhigh/n, χlow/n}. We apply a simple self-adapting mutation rate

127

Chapter 4. Self-adaptation in Noisy Environments

strategy Dmut, in which the mutation rate switches to the other value with a probability

pc(self-adaptive parameter) (Algorithm 14). Thus, the 2-tournament EA with SA-2mr can

be described as Algorithm 13 using Algorithm 14. Note that a similar two-rate self-adaptive

EA was studied in (Dang and Lehre, 2016b). However, they employed a ranking rule based

solely on fitness values, which can constrain the optimisation speed, as low mutation rate

individuals may dominate the population preventing the necessary exploration for faster

convergence.

4.3 Analysed Noise Models

In the theoretical study, we focus on the symmetric noise model, a well-established noise

model extensively investigated in (Qian et al., 2021) and Chapter 3. This choice is moti-

vated by existing runtime analyses of EAs that demonstrate the ineffectiveness of resampling

strategies for successful optimisation in the symmetric noise model. In contrast, employing

a population has been shown to enhance robustness in this context. Nevertheless, for non-

elitist EAs, attaining successful noisy optimisation requires precise tuning of the mutation

rate in relation to the noise level. Expanding upon previous research, our theoretical study

investigates the potential for further enhancing robustness through the self-adapting muta-

tion rates in the scenario where the presence of symmetric noise is unknown.

We revisit some earlier results related to the symmetric noise model. For static 2-

tournament EAs, two theorems related to the LeadingOnes problem in the symmetric noise

model have been established in Chapter 3. Theorem 3.3.8 identifies the mutation rate which

leads to a inefficient optimisation for a given noise level, while Theorem 3.3.6 reveals the

appropriate mutation rate for efficient optimisation. Additionally, for the sake of complete-

ness in our research, we introduce Theorem 4.3.1, which demonstrates that the (1+1) EA

128

4.3. Analysed Noise Models

is inefficient under high-level symmetric noise, adapted from Theorem 20 in (Gießen and

Kötzing, 2016)).

Theorem 4.3.1. For any C ∈ R and any constant q ∈ (0.127107, 1/2), the probability of the

(1+1) EA optimising LeadingOnes in the symmetric noise model (C, q) in eΩ(n) runtime

is e−Ω(n).

Proof. To prove Theorem 4.3.1, we can modify the proof of Theorem 20 in (Gießen and

Kötzing, 2016), which states the lower bound of the (1+1) EA on LeadingOnes under

one-bit noise. We need to re-estimate the lower bound of event E1 in the symmetric noisy

model instead of in the one-bit noise model. By the assumption of E1 that the offspring

x′ only flips exactly one 1 in the right half of the positions, we know f(x) ≥ f(x′). We

distinguish three cases to estimate Pr (E1):

1. C < f(x) + f(x′): The probability of accepting the offspring x′ is at least (1− q)q, where

there is no noise in x and noise in x′.

2. C > f(x) + f(x′): The probability of accepting the offspring x′ is at least q(1− q), where

there is noise in x and no noise in x′.

3. C = f(x) + f(x′): The probability of accepting the offspring x′ is at least 2q(1 − q)/2 ,

where there is noise in either x1 or x2 (fn(x) = fn(x′), so with probability 1/2).

Therefore, the lower bound of the probability of event E1 is Pr (E1) ≥ 49/(100e) · q(1− q) >

1/50 for any constant q ∈ (0.127107, 1/2). The rest of the proof is the same as the proof of

Theorem 20 in (Gießen and Kötzing, 2016).

In our empirical study, we expand the analysis to include two widely studied models,

one-bit noise and bit-wise noise, as introduced in Definitions 2.2.12 and 2.2.13, respectively.

129

Chapter 4. Self-adaptation in Noisy Environments

4.4 High/Low Mutation Rates Lead to Failed/Slow Op-

timisation

From Chapter 3, we know that the non-elitist EAs should reduce the mutation rate to

handle noise. However, too low mutation rates lead to a slow optimisation in the noise-free

environment. In this section, we show that the static 2-tournament EAs using the high or

low mutation rate cannot be efficient if the presence of noise is unknown. We say the high

mutation rate is χhigh

n
where the mutation parameter χhigh > 0 is a constant, and the lower

mutation rate is χlow

n
where χlow = a/n for some constant a > 0.

It is well-known that the 2-tournament EA with mutation rate χ/n with χ < ln(2) is a

constant, and population size λ = c log(n) for a sufficiently large constant c, achieves the

optimum of LeadingOnes without noise in expected runtime O(n2) (Corus et al., 2018).

However, the algorithm can fail in noisy environments if using a constant mutation param-

eter, i.e., χhigh. From Theorem 3.3.8, we know that for any constant mutation parameter

χ > 0, we can find some constant noise level q ∈ [0, 1/2) such that the 2-tournament EA us-

ing any population size λ = poly(n) optimises LeadingOnes under symmetric noise within

ecn generations with probability e−Ω(n) where c > 0 is a constant.

We can use a sufficiently low mutation rate against noise, e.g., χlow

n
. From Theorem 3.3.6,

we know that the expected runtime of the 2-tournament EA with mutation rate χlow/n and

population size λ = c log(n) for a sufficiently large constant c on optimising LeadingOnes

under symmetric noise for any constant noise level q ∈ [0, 1/2) is O (n3). However, such a low

mutation rate slows down the noise-free optimisation by a small but super-constant factor,

i.e., Ω(n2 log(n)) runtime instead of O(n2) guaranteed by using χhigh

n
, which is indicated by

Corollary 4.4.1 via Theorem 2.2.3.

Corollary 4.4.1. The expected runtime of the 2-tournament EA using mutation parameter

130

4.5. Uniformly Mixing Mutation Rates Do Not Help under Noise

satisfying χ ≥ 2−n/3n and χ ∈ O(1/n) on LeadingOnes is Ω(n2 log(n)).

4.5 Uniformly Mixing Mutation Rates Do Not Help un-

der Noise

In this section, we show runtime analysis results on the 2-tournament EA with uniformly mix-

ing high/low mutation rates (UM-2mr) under noise. Theorems 4.5.1-4.5.2 present that using

UM-2mr can optimise the noise-free LeadingOnes function in expected runtime O(n2), but

can fail under symmetric noise with a high probability.

Theorem 4.5.1. For any constants χhigh, a > 0 and χlow = a/n, the expected runtime of the

2-tournament EA with UM-2mr from {χhigh/n, χlow/n} and population size λ > c log(n) for

a sufficiently large constant c on optimising LeadingOnes is O (nλ log (n) + n2).

Proof. We apply the level-based theorem (Theorem 2.2.1) with respect to a partitioning of

the search space {0, 1}n into the following n + 1 levels: Aj := {x | LO(x) = j} for all

j ∈ [0..n].

To verify condition (G2) of Theorem 2.2.1, we assume that at least γλ individuals in level

A≥j+1, where γ ∈ (0, γ0), j ∈ [0..n− 2]. The lower bound of the probability of the offspring

y ∈ A≥j+1 can be estimated by selecting an individual from A≥j+1 and flipping no bit.

Pr ((y, χ′/n) ∈ A≥j+1)

= Pr ((z, χ/n) ∈ A≥j+1) Pr ((y, χ
′/n) ∈ A≥j+1 | (z, χ/n) ∈ A≥j+1)

≥ (γ2 + 2γ(1− γ))
(
1

2

(
1− χhigh

n

)n
+

1

2

(
1− χlow

n

)n)
≥ 2γ(1− γ)

(
1

2

(
1− χhigh

n

)n
+

1

2

(
1− χlow

n

)n)

131

Chapter 4. Self-adaptation in Noisy Environments

by Lemma A.2.5,

= γ(1− γ)
(
e−χhigh + e−χlow

)
(1− o(1))

since χlow ∈ o(1), e−χlow = 1− o(1), then

= γ(1− γ)
(
e−χhigh + 1

)
(1− o(1))

let constant δ := e−χhigh > 0, then

= γ(1− γ) (1 + δ) (1− o(1))

≥ γ(1− γ0) (1 + δ) (1− o(1))

let γ0 := δ/2 and let ∆ := δ(1−δ)
4

> 0, then

= γ(1− δ/2)(1 + δ)(1− o(1))

≥ γ(1 + 2∆)(1− o(1))

≥ γ(1 + ∆).

To verify condition (G1), we estimate the probability of sampling individuals beyond the

current level of the population if there are at least γ0λ individuals in Aj. The lower bound

of this probability can be estimated by selecting an individual in Aj (pessimistically assume

that both x1 and x2 are from Aj), using χhigh

n
mutation rate and only considering the case

that the first 0-bit is flipped and no other bit is flipped, for j ∈ [0..n− 1],

Pr((y, χ′/n) ∈ A≥j+1) ≥
1

2
γ20

(
1− χhigh

n

)n−1 χhigh

n

≥ γ20e
−χhigh

χhigh

n
(1− o(1)) =: zj = Ω

(
1

n

)

Then we compute the population size required by condition (G3) λ ≥ 4
γ0∆2 ln

(
128(n+1)
min{zj}∆2

)
=

O(log(n)). Condition (G3) is satisfied by λ ≥ c log(n) for a sufficiently large constant c.

132

4.5. Uniformly Mixing Mutation Rates Do Not Help under Noise

Overall, the expected runtime is no more than

E[T] ≤ 8

∆2

n−1∑
j=0

(
λ ln

(
6∆λ

4 + zj∆λ

)
+

1

zj

)
≤ 8

∆2

(
λ(n− 1) ln

(
6

min{zj}

)
+

n− 1

min{zj}

)
= O(nλ log(n) + n2).

Now we prove that using UM-2mr can fail under symmetric noise with a high probability.

Theorem 4.5.2. For any constant q ∈ (0, 1/2) and any constant δ ∈ (0, q), the probability

that the 2-tournament EA with UM-2mr from {χhigh/n, χlow/n} where constants χhigh ≥

ln
(

1−q
q−δ

)
> χlow > 0 with any population size λ ∈ poly(n) optimises LeadingOnes in the

symmetric noise model (C, q), where C ∈ R, within time ecn is e−Ω(n), for some constant

c > 0.

Proof. We use Theorem A.3.1 to prove Theorem 4.5.2. To estimate the upper bound of

E [Rt(i)], we compute the expected number of offspring of the fittest individual x̂ in genera-

tion t. To select x̂, there are two cases: (1) the algorithm selects x̂ twice, or (2) selects x̂ and

one of the other individuals x and selects x̂ even if the noise occurs. For case (2), the proba-

bility of a successful comparison S, i.e, x̂ is exactly selected, is Pr(S) = Pr (fn(x̂) > fn(x))+

1
2
Pr (fn(x̂) = fn(x)) = 1− q, where the last equation is from Lemma 3.2.1 (f). Then,

E [Rt(i)] = λ

((
1

λ

)2

+ 2(1− q) 1
λ

(
1− 1

λ

))

=
1

λ
+ 2(1− q)

(
1− 1

λ

)
< 2(1− q) =: α0.

133

Chapter 4. Self-adaptation in Noisy Environments

Then we estimate the upper bound of
∑m

j=1 pje
−χj in condition (3):

m∑
j=1

pje
−χj =

1

2
e−χhigh +

1

2
e−χlow

≤ q − δ
2(1− q)

+
1

2
=

1− δ
2(1− q)

=
1− δ
α0

.

which by Theorem A.3.1 implies results on LeadingOnes.

4.6 Self-adapting Mutation Rates Guarantee Efficiency

Under Noise

We now analyse the self-adaptive EA using level-based theorems to show their efficiency in

noisy and noise-free environments. Theorem 4.6.1 shows that the 2-tournament EA using

SA-2mr achieves a comparable performance to using a high mutation rate χhigh

n
, i.e., O(n2)

runtime, on the noise-free LeadingOnes function. The proof of Theorem 4.6.1 is conducted

by the level-based theorem (Theorem 2.2.1). Theorem 4.6.2 shows that the self-adaptive EA

also efficiently optimises under symmetric noise.

Theorem 4.6.1. For any constant χhigh ∈ (0, ln (2(1− δ))] where δ ∈ (0, 1/2) is any con-

stant, χlow = a/n where a > 0 is any constant, and any pc ∈ o(1) ∩ Ω(1/n), the expected

runtime of the 2-tournament EA using SA-2mr from {χhigh

n
, χlow

n
} with self-adaptation pa-

rameter pc and population size λ > c log(n) for a sufficiently large constant c on optimising

LeadingOnes without noise is O (nλ log (n) + n2).

Proof. We apply the level-based theorem (Theorem 2.2.1) with respect to a partitioning of

the state space Y into the following n+1 levels and 2n+1 sub-levels: Aj := {(x, χhigh

n
), (x, χlow

n
) |

LO(x) = j} for all j ∈ [0..n]. For each level, we divide Aj into two sub-levels A(j,2) :=

134

4.6. Self-adapting Mutation Rates Guarantee Efficiency Under Noise

{(x, χhigh

n
) | LO(x) = j} and

A(j,1) :=


{(x, χlow

n
) | LO(x) = j} if j ≤ n− 1

{(x, χhigh

n
), (x, χlow

n
) | LO(x) = j} if j = n.

To describe the order of two levels A(j,i) and A(j′,i′), we define (j, i) > (j′, i′) if (j > j′)∨ (j =

j′ ∧ i > i′). For convenience, we also define (j, 1) + 1 = (j, 2) and (j, 2) + 1 = (j + 1, 1).

To verify condition (G2) of Theorem 2.2.1, we assume that at least γλ individuals are in

level A≥(j,i)+1, where γ ∈ (0, γ0], (j, i) ≤ (n − 1, 1) and constant γ0 ∈ (0, 1). We will define

γ0 later. The lower bound of the probability of the offspring y ∈ A≥(j,i)+1 can be estimated

by selecting an individual from A≥(j,i)+1, keeping its mutation rate and flipping no bit.

Pr
(
(y, χ′/n) ∈ A≥(j,i)+1

)
= Pr

(
(z, χ/n) ∈ A≥(j,i)+1

)
· Pr

(
(y, χ′) ∈ A≥(j,i)+1 | (z, χ/n) ∈ A≥(j,i)+1

)
≥ (γ2 + 2γ(1− γ))(1− pc)

(
1− χ′

n

)n
≥ 2γ(1− γ)(1− pc)

(
1− χhigh

n

)n
by Lemma A.2.11 and pc ∈ o(1),

≥ 2γ(1− γ0)
1

2(1− δ)
(1− o(1)) = γ

1− γ0
1− δ

(1− o(1))

let γ0 := δ/2 and let ∆ := δ(1−δ)
4

> 0, then

= γ(1− δ/2)(1 + δ)(1− o(1)) = γ(1 + 2∆)(1− o(1)) ≥ γ(1 + ∆).

To verify condition (G1), we estimate the probability of sampling individuals beyond the

current level of the population if there are at least γ0λ individuals inA(j,i) for (j, i) ≤ (n−1, 1).

The lower bound of this probability can be estimated by selecting an individual in A(j,i)

135

Chapter 4. Self-adaptation in Noisy Environments

(here we pessimistically only consider the situation that both x1 and x2 are in A(j,i)) and

only considering two cases:

• i = 2: the mutation rate is not changed, and the first 0-bit is flipped, but no other bit is

flipped (the probability is p2 = (1− pc)χhigh

n
(1− χhigh/n)

n−1 = Ω(1/n)),

• i = 1: the mutation rate is switched to χhigh

n
and no bit is flipped (the probability is

p1 = pc (1− χhigh/n)
n = Ω(1/n)).

Then, Pr((y, χ′/n) ∈ A≥j+1) ≥ γ20 min {p1, p2} =: z(j,i) = Ω
(
1
n

)
.

Then we compute the population size required by condition (G3) λ ≥ 4
γ0∆2 ln

(
128(n+2)

min{z(j,i)}∆2

)
=

O(log(n)). Condition (G3) is satisfied by λ ≥ c log(n) for a sufficiently large constant c.

Overall, the expected runtime is no more than

E[T] ≤ 8

∆2

2n∑
k=1

(
λ ln

(
6∆λ

4 + min{z(j,i)}∆λ

)
+

1

min{z(j,i)}

)
≤ 8

∆2

(
2nλ ln

(
6

min{z(j,i)}

)
+

2n

min{z(j,i)}

)
= O(nλ log(n) + n2).

Theorem 4.6.2. For any constant χhigh > 0, χlow = a/n where a > 0 is any constant,

an arbitrary constant q ∈ [0, 1/2) and pc ∈ o(1) ∩ Ω(1/n), the expected runtime of the

2-tournament EA using SA-2mr from {χhigh

n
, χlow

n
} with self-adaptation parameter pc and

population size λ > c log(n) for a sufficiently large constant c on optimising LeadingOnes

in the symmetric noise model (C, q), where C ∈ R, is O (nλ log (n) + n3).

Theorem 4.6.2 is the most important result of this chapter. To prove it, we consider the

two cases based on the noise level q. If the noise level is small enough compared to the

high mutation rate χhigh

n
, we use a similar approach of Theorem 4.6.1 to complete the proof.

136

4.6. Self-adapting Mutation Rates Guarantee Efficiency Under Noise

Otherwise, we use a different level partition and the new level-based theorem (Theorem 2.2.2)

to prove it. Precisely, we define a value ℓ ∈ N such that for any constant δ ∈ (0, (1/2− q)3],(
1− χhigh

n

)ℓ−1

>
1 + δ

2(1− q)
≥
(
1− χhigh

n

)ℓ
, (4.1)

and distinguish between two cases: (A) ℓ ≤ n− 2 and (B) ℓ ≥ n− 1.

For case (A) ℓ ≤ n − 2, we use the level partition defined in Definition 4.6.1. Figure 4.1

illustrates this level definition. The state space Y is divided into n + 1 levels Aj∈[0..n], with

respect to LO(x). Each of the first ℓ levels (the red/I region) is divided into two sub-

levels, A(j,1) and A(j,2), representing the low and high mutation rates, respectively. Levels

Aj∈[ℓ+1..n−1] (the green/III region) are defined as having only one sub-level A(j,1), which

represents the low mutation rate. The final level (the optimal level, the white region),

An :=: A(n,1), contains both high and low mutation rates. The sub-level A(ℓ,2) (the cyan/II

region) is extended to the rest of the state space , where f(x) ≥ ℓ and with high mutation

rate.

Definition 4.6.1. For any ℓ ∈ [0, n− 2], we define

A(j,1) :=


{(x, χlow

n
) | LO(x) = j} if 0 ≤ j ≤ n− 1,

{(x, χhigh

n
), (x, χlow

n
) | LO(x) = n} if j = n; and

A(j,2) :=


{(x, χhigh

n
) | LO(x) = j} if 0 ≤ j ≤ ℓ− 1

{(x, χhigh

n
) | LO(x) ≥ ℓ} if j = ℓ.

To compare the levels A(j,i) and A(j′,i′), we define (j, i) > (j′, i′) if either (j = j′ and i > i′)

or (j > j′). To simplify the notation, we also define (j, 1)+1 = (j, 2) and (j, 2)+1 = (j+1, 1)

for j ≤ ℓ, and (j, 1) + 1 = (j + 1, 1) for j ≥ ℓ+ 1.

To apply Theorem 2.2.2, we must estimate the “upgrading” probability that is sampling an

offspring in the higher level (condition (G1)), and the “growing” probability that sampling

137

Chapter 4. Self-adaptation in Noisy Environments

an offspring in at least the same level (condition (G2)). The individuals in the green/III

region might not have a sufficiently large probability of being selected if there are too many

individuals with high fitness and high mutation rate (the cyan/II region). The high mutation

rate can fail the optimisation under noise. Therefore, it is crucial to verify condition (G0),

which ensures that there are not too many individuals in the cyan/II region. Finally, we

gain an upper runtime bound by calculating the required population size (condition (G3)).

We first introduce some lemmas for the proof. The presence of noise essentially affects the

selection (discussed in Chapter 3), so we compute the probability of selecting a high-level

individual in noisy environments in Lemma 4.6.1. Lemmas 4.6.2-4.6.3 are used to verify

conditions (G0) and (G2) of Theorem 2.2.2, respectively.

nℓℓ − 10 ℓ + 1 n − 1

…

…

…

…

1 … …

χhigh

χlow

A(ℓ,2)

A(ℓ+1,1) A(n−1,1)

A(n,1)A(0,2) A(1,2) A(ℓ−1,2)

Ω (1
n) Ω (1

n) Ω (1
n) Ω (1

n)

Ω (1
n2) Ω (1

n2) Ω (1
n2)

<latexit sha1_base64="EID6P3BF/tMSSArj+VDsxk81EX4=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBHqpSRS1GPRiwfBCvYD2lg22227dLMJuxNtCf0fXjwo4tX/4s1/47bNQVsfDDzem2Fmnh8JrtFxvq2l5ZXVtfXMRnZza3tnN7e3X9NhrCir0lCEquETzQSXrIocBWtEipHAF6zuD64mfv2RKc1DeY+jiHkB6Une5ZSgkR5ayIaoaXJzOy4MT9q5vFN0prAXiZuSPKSotHNfrU5I44BJpIJo3XSdCL2EKORUsHG2FWsWETogPdY0VJKAaS+ZXj22j43SsbuhMiXRnqq/JxISaD0KfNMZEOzreW8i/uc1Y+xeeAmXUYxM0tmibixsDO1JBHaHK0ZRjAwhVHFzq037RBGKJqisCcGdf3mR1E6L7lmxdFfKly/TODJwCEdQABfOoQzXUIEqUFDwDK/wZj1ZL9a79TFrXbLSmQP4A+vzB0s2kmI=</latexit>

LO(x)

A(0,1) A(1,1) A(ℓ−1,1) A(ℓ,1)

A(ℓ,2) A(ℓ,2)

A(n,1)

Ω (1
n) Ω (1

n3)Ω (1
n) Ω (1

n) Ω (1
n)Ω (1

n)

<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I

<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="4XwP8qCnlx4wdm6x6iunRBUs9yg=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9IQ5lMJ+3QSSbM3Igl9DPcuFDErV/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYXed++54pzWV8B+OE+REZxDzklICRvC6wB9A0q9cnvVLZsd3LHNixK45BdUEq2LWdKcpojkav9NHtS5pGLAYqiNae6yTgZ0QBp4JNit1Us4TQERkwz9CYREz72fTkCT42Sh+HUpmKAU/V7xMZibQeR4HpjAgM9W8vF//yvBTCCz/jcZICi+lsUZgKDBLn/+M+V4yCGBtCqOLmVkyHRBEKJqWiCWHxKf6ftCq2e2ZXb0/Ltat5HAV0iI7QCXLROaqhG9RATUSRRI/oGb1YYD1Zr9bbrHXJms8coB+w3r8A45+RrA==</latexit>

II
<latexit sha1_base64="4XwP8qCnlx4wdm6x6iunRBUs9yg=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9IQ5lMJ+3QSSbM3Igl9DPcuFDErV/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYXed++54pzWV8B+OE+REZxDzklICRvC6wB9A0q9cnvVLZsd3LHNixK45BdUEq2LWdKcpojkav9NHtS5pGLAYqiNae6yTgZ0QBp4JNit1Us4TQERkwz9CYREz72fTkCT42Sh+HUpmKAU/V7xMZibQeR4HpjAgM9W8vF//yvBTCCz/jcZICi+lsUZgKDBLn/+M+V4yCGBtCqOLmVkyHRBEKJqWiCWHxKf6ftCq2e2ZXb0/Ltat5HAV0iI7QCXLROaqhG9RATUSRRI/oGb1YYD1Zr9bbrHXJms8coB+w3r8A45+RrA==</latexit>

II
<latexit sha1_base64="4XwP8qCnlx4wdm6x6iunRBUs9yg=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9IQ5lMJ+3QSSbM3Igl9DPcuFDErV/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYXed++54pzWV8B+OE+REZxDzklICRvC6wB9A0q9cnvVLZsd3LHNixK45BdUEq2LWdKcpojkav9NHtS5pGLAYqiNae6yTgZ0QBp4JNit1Us4TQERkwz9CYREz72fTkCT42Sh+HUpmKAU/V7xMZibQeR4HpjAgM9W8vF//yvBTCCz/jcZICi+lsUZgKDBLn/+M+V4yCGBtCqOLmVkyHRBEKJqWiCWHxKf6ftCq2e2ZXb0/Ltat5HAV0iI7QCXLROaqhG9RATUSRRI/oGb1YYD1Zr9bbrHXJms8coB+w3r8A45+RrA==</latexit>

II
<latexit sha1_base64="4XwP8qCnlx4wdm6x6iunRBUs9yg=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9IQ5lMJ+3QSSbM3Igl9DPcuFDErV/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYXed++54pzWV8B+OE+REZxDzklICRvC6wB9A0q9cnvVLZsd3LHNixK45BdUEq2LWdKcpojkav9NHtS5pGLAYqiNae6yTgZ0QBp4JNit1Us4TQERkwz9CYREz72fTkCT42Sh+HUpmKAU/V7xMZibQeR4HpjAgM9W8vF//yvBTCCz/jcZICi+lsUZgKDBLn/+M+V4yCGBtCqOLmVkyHRBEKJqWiCWHxKf6ftCq2e2ZXb0/Ltat5HAV0iI7QCXLROaqhG9RATUSRRI/oGb1YYD1Zr9bbrHXJms8coB+w3r8A45+RrA==</latexit>

II

<latexit sha1_base64="8okWW1WDgRHXcIJfrq0f3lbnB7c=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9oQplMJ+3QySTM3Igl9DfcuFDErT/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lo5TRVmTxiJWnYBoJrhkTeAgWCdRjESBYO1gdJ377XumNI/lHYwT5kdkIHnIKQEjeR6wB9A0q9frk16p7NjuZQ7s2BXHoLogFezazhRlNEejV/rw+jFNIyaBCqJ113US8DOigFPBJkUv1SwhdEQGrGuoJBHTfja9eYKPjdLHYaxMScBT9ftERiKtx1FgOiMCQ/3by8W/vG4K4YWfcZmkwCSdLQpTgSHGeQC4zxWjIMaGEKq4uRXTIVGEgompaEJYfIr/J62K7Z7Z1dvTcu1qHkcBHaIjdIJcdI5q6AY1UBNRlKBH9IxerNR6sl6tt1nrkjWfOUA/YL1/AXuXkf8=</latexit>

III

<latexit sha1_base64="8okWW1WDgRHXcIJfrq0f3lbnB7c=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9oQplMJ+3QySTM3Igl9DfcuFDErT/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lo5TRVmTxiJWnYBoJrhkTeAgWCdRjESBYO1gdJ377XumNI/lHYwT5kdkIHnIKQEjeR6wB9A0q9frk16p7NjuZQ7s2BXHoLogFezazhRlNEejV/rw+jFNIyaBCqJ113US8DOigFPBJkUv1SwhdEQGrGuoJBHTfja9eYKPjdLHYaxMScBT9ftERiKtx1FgOiMCQ/3by8W/vG4K4YWfcZmkwCSdLQpTgSHGeQC4zxWjIMaGEKq4uRXTIVGEgompaEJYfIr/J62K7Z7Z1dvTcu1qHkcBHaIjdIJcdI5q6AY1UBNRlKBH9IxerNR6sl6tt1nrkjWfOUA/YL1/AXuXkf8=</latexit>

III
<latexit sha1_base64="8okWW1WDgRHXcIJfrq0f3lbnB7c=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9oQplMJ+3QySTM3Igl9DfcuFDErT/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lo5TRVmTxiJWnYBoJrhkTeAgWCdRjESBYO1gdJ377XumNI/lHYwT5kdkIHnIKQEjeR6wB9A0q9frk16p7NjuZQ7s2BXHoLogFezazhRlNEejV/rw+jFNIyaBCqJ113US8DOigFPBJkUv1SwhdEQGrGuoJBHTfja9eYKPjdLHYaxMScBT9ftERiKtx1FgOiMCQ/3by8W/vG4K4YWfcZmkwCSdLQpTgSHGeQC4zxWjIMaGEKq4uRXTIVGEgompaEJYfIr/J62K7Z7Z1dvTcu1qHkcBHaIjdIJcdI5q6AY1UBNRlKBH9IxerNR6sl6tt1nrkjWfOUA/YL1/AXuXkf8=</latexit>

III

Figure 4.1: Illustration of the level partition defined in Definition 4.6.1. The notions on

arrows indicate the “upgrading” probabilities for levels in the proof of Theorem 4.6.2.

Lemma 4.6.1. Assume that we have a population Pt ∈ Yλ where Y := {0, 1}n×{χhigh

n
, χlow

n
}

and χhigh > χlow > 0, that is sorted such that Pt(1) ⪰ . . . ⪰ Pt(λ) on the noise-free version of

LeadingOnes function. For any γ ∈ (0, 1), any C ∈ R and any q ∈ [0, 1/2), if (x1, χ1/n)

and (x2, χ2/n) are two individuals which are uniformly at random selected from Pt, and

(z, χ′/n) is created by steps 5-8 in Algorithm 13 on the LeadingOnes function in the

138

4.6. Self-adapting Mutation Rates Guarantee Efficiency Under Noise

symmetric noise model (C, q), then the probability of (z, χ′/n) ⪰ Pt(⌊γλ⌋) where λ = |Pt| is

γ(2(1− q)− (1− 2q)γ) ≥ 2γ(1− q)(1− γ).

Proof. There are two events of selecting an “advanced individual”, i.e., (z, χ′/n) ⪰ Pt(⌊γλ⌋):

(a) the algorithm selects two individuals (x1, χ1/n) and (x2, χ2/n) both from the top ⌊γλ⌋

individuals of sorted Pt. This happens with probability γ2.

(b) either (x1, χ1/n) or (x2, χ2/n) from the top ⌊γλ⌋ individuals and selects such individual

even if the noise occurs.

For event (2), we assume without loss of generality that (x1, χ1/n) ⪰ (x2, χ2/n). Then the

probability of a successful comparison S, i.e, (x1, χ1/n) wins the tournament, is Pr(S) =

Pr (fn(x1) > fn(x2)) +
1
2
Pr (fn(x1) = fn(x2)) = (1 − q), where the last equation is from

Lemma 3.2.1 (f). Therefore, we obtain Pr(S) = (1− q)2 + (1− q)q = 1
2
+ 1

2
− q. Thus, the

probability of selecting an individual in the top ⌊γλ⌋ individuals of sorted Pt is

γ2 + 2γ(1− γ) Pr(S) = γ (2 (1− q)− (1− 2q) γ)

≥ 2γ(1− q)(1− γ).

The following lemma ensures that there are not too many individuals in the cyan/II region.

Lemma 4.6.2 (Condition (G0)). Given any subset B ⊂ Y where Y := {0, 1}n×{χhigh

n
, χlow

n
}

and χhigh > χlow > 0, let Yt := |Pt ∩B| be the number of individuals in population Pt of the

2-tournament EA with SA-2mr from {χhigh

n
, χlow

n
} and pc ∈ o(1)∩Ω(1/n) that belong to subset

B. Consider the symmetric noise model (C, q), where C ∈ R and constant q ∈ [0, 1/2). If

there exist three parameters ρ, ε, σ ∈ (0, 1) such that Pr ((y, χ′/n) ∈ B | (z, χ/n) ∈ B) ≤ ρ,

and Pr ((y, χ′/n) ∈ B | (z, χ/n) /∈ B) ≤ σψ− ε for ψ ∈ [ψ0, 1], where ψ0 =
2(1−q)−(1−σ)/ρ

1−2q
and

ψ0 ∈ (0, 1), then

Pr ((y, χ′/n) ∈ B | |Pt ∩B| ≤ ψλ) ≤ ψ(1− ε).

139

Chapter 4. Self-adaptation in Noisy Environments

This lemma is very similar to Lemma 2 in (Dang and Lehre, 2016b).

Proof. Let ψ := Yt/λ. For the upper bound, we assume that all search points in B have

higher fitness and higher mutation rate than search points in X\B. Then,

Pr ((z, χ/n) ∈ B ∧ (y, χ′/n) ∈ B) = Pr ((z, χ/n) ∈ B) Pr ((y, χ′/n) ∈ B | (z, χ/n) ∈ B)

by Lemma 4.6.1,

≤ ψ (2 (1− q)− (1− 2q)ψ) ρ.

Let g(ψ) = ψ (2 (1− q)− (1− 2q)ψ) which is monotone increasing when ψ ∈ (0, 1) by

Lemma A.2.11 (1), such that

≤ (max(ψ0, ψ)) ρ

by ψ ≥ ψ0 and the value of ψ0,

≤ ψ (2 (1− q)− (1− 2q)ψ0) ρ = ψ(1− σ).

Thus, the probability of producing an individuals in B is

Pr ((y, χ′/n) ∈ B | |Pt ∩B| ≤ ψλ) = Pr ((z, χ/n) ∈ B ∧ (y, χ′/n) ∈ B | |Pt ∩B| ≤ ψλ)

+ Pr ((z, χ/n) /∈ B ∧ (y, χ′/n) ∈ B | |Pt ∩B| ≤ ψλ)

≤ ψ(1− σ) + (σψ − ε)

≤ ψ − ε < ψ(1− ε) ≤ ψ(1− ε).

The following lemma gives the “expanding” probability of sampling an offspring in at least

the same level.

140

4.6. Self-adapting Mutation Rates Guarantee Efficiency Under Noise

Lemma 4.6.3 (Condition (G2)). Assume that 0 < δ ≤ (1
2
− q)3 and q ∈ [0, 1/2) are any

constants, ψ0 :=
1−q

1/2−q

(
1− 1−(1/2)(1/2−q)2

1+δ

)
and the state space Y := {0, 1}n × {χhigh

n
, χlow

n
} is

divided according to Definition 4.6.1. Consider LeadingOnes in the symmetric noise model

(C, q) where C ∈ R. There exist constants ∆ ∈ (0, (−q/5 + 1/10)/2] and γ0 ∈ (0,−q/90 +

1/180], for any population Pt of the 2-tournament EA with SA-2mr from {χhigh

n
, χlow

n
} and

pc ∈ o(1)∩Ω(1/n), any γ ∈ (0, γ0] and (j, i) ≥ (ℓ, 2), if |Pt∩A(ℓ,2)| ≤ ψ0λ, |Pt∩A≥(j,i)| ≥ γ0λ

and |Pt ∩ A≥(j,i)+1| ≥ γλ, then Pr
(
(y, χ′/n) ∈ A≥(j,i)+1

)
≥ γ(1 + ∆).

Proof. We assume that |Pt ∩ A(ℓ,2)| ≤ ψ0λ. By the definition of ψ0, and 0 < δ ≤ (1/2− q)3,

we get upper and lower bounds of ψ0 for later use. By replacing for the upper on δ in the

definition of ψ0,

ψ0 ≤
2(1− q)−

2
(
1− 1

2(
1
2
−q)

2
)
(1−q)

1+(1/2−q)3

1− 2q

=
4− 16q + 20q2 − 8q3

9− 6q + 12q2 − 8q3
. (4.2)

Then by replacing for the lower on δ in the definition of ψ0,

ψ0 >
2(1− q)− 2

(
1− 1

2

(
1
2
− q
)2)

(1− q)

1− 2q

=

(
1

2
− q
)(

1

2
− q

2

)
. (4.3)

We now derive a lower bound p0 on the probability that given an individual (z, χ/n)

in level A≥(j,i)+1, the mutation operator produces an individual (y, χ′/n) in A≥(j,i)+1, for

(j, i) ≥ (ℓ, 2). The levels higher than A(ℓ,2) are all with mutation rate χlow

n
except the optimal

level A(n,1), thus

Pr
(
(y, χ′/n) ∈ A≥(j,i)+1 | (z, χ/n) ∈ A≥(j,i)+1

)
≥
(
1− χlow

n

)n
(1− pc)

141

Chapter 4. Self-adaptation in Noisy Environments

by Lemma A.2.5,

≥ e−χlow

(
1− χlow

2

n

)
(1− pc) =: p0 = (1− o(1)),

since pc ∈ o(1) and χlow ∈ o(1).

Based on the level partition, the individuals in levels A≥(j,i)+1 are fitter than any other

individual not in A(ℓ,2), but could be less fit than individuals in A(ℓ,2). Consequently, an

individual in A≥(j,i)+1 can be generated under the condition that the following sequence of

events occurs: event (a) no individual is selected from A(ℓ,2), event (b) at least one individual

is selected from A≥(j,i)+1 and it is exactly selected after comparison (Line 3 in Algorithm 5),

and event (c) with probability at least p0, the mutated individual z is in A≥j+1. The prob-

ability of event (a) occurring is given by Pr(S) = 1 − q, as demonstrated in Lemma 4.6.1.

Thus, the joint probability of these events is at least

2γ(1− ψ0 − γ)(1− q)p0 = 2γ(1− q)(1− ψ0 − γ)(1− o(1))

by Eq. (4.2),

≥ 2γ(1− q)
(
1− 4− 16q + 20q2 − 8q3

9− 6q + 12q2 − 8q3
− γ
)
(1− o(1))

= 2γ(1− q)
(

5 + 10q − 8q2

9− 6q + 12q2 − 8q3
− γ
)
(1− o(1))

by γ0 ∈ (0,−q/90 + 1/180], then for all γ ∈ (0, γ0),

≥ 2γ(1− q)
(

5 + 10q − 8q2

9− 6q + 12q2 − 8q3
− γ0

)
(1− o(1))

= 2γ(1− q)
(

5 + 10q − 8q2

9− 6q + 12q2 − 8q3
− 1

180
+

q

90

)
(1− o(1))

= γ

(
1 +

81 + 1473q − 4368q2 + 2216q3 − 48q4 + 16q5

90(9− 6q + 12q2 − 8q3)

)
(1− o(1))

142

4.6. Self-adapting Mutation Rates Guarantee Efficiency Under Noise

by Lemma A.2.11 (2), we know 90(9− 6q + 12q2 − 8q3) < 810, then

> γ

(
1 +

81 + 1473q − 4368q2 + 2216q3 − 48q4 + 16q5

810

)
(1− o(1))

= γ

(
1 +

(
1

10
+

491q

270
− 728q2

135
+

1108q3

405
− 8q4

135
+

8q5

405

))
(1− o(1))

by ∆ ∈ (0, (−q/5+1/10)/2] which is a constant and Lemma A.2.11 (3), we know 1
10
+ 491q

270
−

728q2

135
+ 1108q3

405
− 8q4

135
+ 8q5

405
≥ 2∆, then

≥ γ(1 + 2∆)(1− o(1)) ≥ γ(1 + ∆).

We now prove Theorem 4.6.2 using Lemmas 4.6.1 to 4.6.3.

Proof of Theorem 4.6.2. Recall Eq. 4.1, we first consider case (A) ℓ ≤ n− 2 which refers

to the level partition defined by Definition 4.6.1. We apply the new level-based theorem

(Theorem 2.2.2) with respect to this level partitioning. Prior to proving the theorem, we

introduce several constants that will be used in the subsequent calculations: δ is any constant

that satisfies 0 < δ ≤ (1/2− q)3, ρ := 1+δ
2(1−q) , σ := (1/2 − q)2/2, ψ0 := 2(1−q)−(1−σ)/ρ

1−2q
,

ζ := 1
40

(
1
2
− q
)3, ε := (1/2 − q)3/10 > 0, γ0 := min

{
δ

4(1+δ)
,−q/90 + 1/180

}
and ∆ :=

min {(−q/5 + 1/10)/2, δ/2}.

We now show that the condition (G0) of Theorem 2.2.2 is satisfied. We consider A(ℓ,2)

as the B subset in Theorem 2.2.2 for all (j, i) ≥ (ℓ, 2) (the cyan/II region illustrated in

Figure 4.1). Assume (z, χ/n) ∈ A(ℓ,2), then, to produce (y, χ′/n) ∈ A(ℓ,2), it is necessary not

to change the mutation rate and not flip the first ℓ bits. Using Eq. (4.1) and pc ∈ (0, 1), the

probability of this event is

Pr
(
(y, χ′/n) ∈ A(ℓ,2)|(z, χ/n) ∈ A(ℓ,2)

)
= (1− pc)

(
1− χhigh

n

)ℓ
<

1 + δ

2(1− q)
= ρ.

143

Chapter 4. Self-adaptation in Noisy Environments

When applying Lemma 4.6.2, we use the parameter ψ0 which has been defined in terms of ρ

and σ, as

ψ0 =
2(1− q)− (1− σ)/ρ

1− 2q

=
1− q
1/2− q

(
1− 1− (1/2) (1/2− q)2

1 + δ

)

by Eq. (4.3),

>

(
1

2
− q
)(

1

2
− q

2

)
.

If (z, χ/n) is not in A(ℓ,2), it is necessary to flip at least one specific bit-position, or change

the mutation rate, an event which occurs with probability

Pr
(
(y, χ′/n) ∈ A(ℓ,2) | (z, χ/n) /∈ A(ℓ,2)

)
< max

{
pc,

χhigh

n

}
which is by constants pc,

χhigh

n
∈ o(1), ψ0, σ > 0 and ε = (1/2− q)3/10 > 0, then

< ψ0σ − ε ≤ ψσ − ε.

ψ0σ − ε >
(
1

2
− q
)(

1

2
− q

2

)
(1/2− q)2

2
− (1/2− q)3

10

=
1

20

(
1

2
− q
)3

(3− 5q)

since q < 1/2, we have 3− 5q > 1/2, then

>
1

40

(
1

2
− q
)3

=: ζ > 0,

where ζ is a constant which is larger than max
{
pc,

χhigh

n

}
= o(1). Lemma 4.6.2 now implies

that condition (G0) satisfied with ψ0 =
1−q

1/2−q

(
1− 1−(1/2)(1/2−q)2

1+δ

)
.

We then verify condition (G2) of Theorem 2.2.2. We first consider the case of (j, i) ≤

(ℓ, 1) (the red/I region illustrated in Figure 4.1). Recall the definition of γ0 and define

144

4.6. Self-adapting Mutation Rates Guarantee Efficiency Under Noise

A+ := A≥(j,i)+1 Assume that |Pt ∩ A+| = γλ for γ ∈ (0, γ0]. To produce an individual

(y, χ′/n) ∈ A+, it suffices to select an individual (z, χ/n) ∈ A+, do not change the mutation

rate and do not flip the first j + 1 bits, then the lower bound of this probability is,

Pr

(
(y,

χ′

n
) ∈ A+

)
= Pr

(
(z,

χ

n
) ∈ A+

)
Pr

(
(y,

χ′

n
) ∈ A+|(z,

χ

n
) ∈ A+

)
= 2γ(1− q)(1− γ)(1− pc)

(
1− χ′

n

)j
since j ≤ ℓ in this case,

≥ 2γ(1− q)(1− γ)(1− pc) (1− χ′/n)
ℓ

≥ 2γ(1− q)(1− γ)(1− pc) (1− χhigh/n)
ℓ

by the definition of ℓ in Eq. (4.1),

≥ 2γ(1− q)(1− γ)(1− pc)
1 + δ

2(1− q)

(
1− χhigh

n

)
= γ(1− γ)(1− pc)(1 + δ)(1− o(1))

≥ γ(1− γ0)(1− pc)(1 + δ)(1− o(1))

≥ γ (1 + 3δ/4) (1− pc)(1− o(1))

then since ∆ = δ/2 and pc ∈ o(1),

≥ γ(1 + ∆).

We also know that condition (G2) is satisfied if (j, i) ≥ (ℓ, 2) from Lemma 4.6.3 for constants

γ0 and ∆.

We now verify condition (G1) of Theorem 2.2.2. Assume that the size of Pt ∩A≥(j,i) is at

least γ0λ, i.e., γ0λ ≤ |Pt ∩ A≥(j,i)|. The lower bound of selecting an individual (z, χ/n) ∈

A≥(j,i) is Pr
(
(z, χ/n) ∈ A≥(j,i)

)
≥ γ20 = Ω(1). We distinguish levels into four groups:

145

Chapter 4. Self-adaptation in Noisy Environments

• For levels A(j,1)≤(ℓ,1) (the red/I region with χlow in Figure 4.1), to produce an individual

(y, χ′/n) ∈ A≥(j,1)+1 it suffices to select an individual (z, χ/n) ∈ A≥(j,1) and change its

mutation rate from χlow

n
to χhigh

n
, then this probability is at least

Pr
(
(y, χ′/n) ∈ A≥(j,1)+1

)
≥ Pr

(
(z, χ/n) ∈ A≥(j,1)

)
pc(1− q)

=: z(j,1) ∈ Ω

(
1

n

)
.

• For levels A(j,2)≤(ℓ−1,2) (the red/I region with χhigh

n
in Figure 4.1), to produce an individual

(y, χ′/n) ∈ A≥(j,2)+1 it suffices to select an individual (z, χ/n) ∈ A≥(j,2), do not change the

mutation rate and only flip the (j + 1)-th bit, then the lower bound of this probability is

Pr
(
(y, χ′/n) ∈ A≥(j,2)+1

)
≥ Pr

(
(z, χ/n) ∈ A≥(j,2)

)
(1− pc)(1− q)

(
1− χhigh

n

)n−1 χhigh

n

=: z(j,2) ∈ Ω

(
1

n

)
.

• For level A(ℓ,2) (the cyan/II region in Figure 4.1), to produce an individual (y, χ′/n) ∈

A≥(ℓ+1,1) it suffices to select an individual (z, χ/n) ∈ A≥(ℓ,2), change its mutation rate

from χhigh

n
to χlow

n
and only flip the ℓ+1-th bit, then the lower bound of this probability is

Pr
(
(y, χ′/n) ∈ A≥(ℓ+1,1)

)
≥ Pr

(
(z, χ/n) ∈ A≥(ℓ,2)

)
(1− q)pc

(
1− χlow

n

)n−1 χlow

n

=: z(ℓ,2) ∈ Ω

(
1

n3

)
.

• For levels A(j,1)≥(ℓ+1,1) (the green/III region in Figure 4.1), to produce an individual

(y, χ′/n) ∈ A≥(j+1,1) it suffices to select an individual (z, χ/n) ∈ A≥(j,1), do not change the

mutation rate and only flip the (j + 1)-th bit, then the lower bound of this probability is

Pr
(
(y, χ′/n) ∈ A≥(j+1,1)

)
≥ Pr

(
(z, χ/n) ∈ A≥(j,1)

)
(1− q)(1− pc)

(
1− χlow

n

)n−1 χlow

n

=: z(j,1) ∈ Ω

(
1

n2

)
.

Then we compute the population size required by condition (G3). Since γ0,∆ > 0 are

some constants and m = 2ℓ + (n − ℓ) ≤ 2n, then λ > 12
γ0∆2 ln

(
300m

min{z(j,i)}∆2

)
= O (log(n)).

Condition (G3) is satisfied by λ ≥ c log(n) for a sufficiently large constant c.

146

4.6. Self-adapting Mutation Rates Guarantee Efficiency Under Noise

Finally, all conditions of Theorem 2.2.2 hold, and the expected runtime is no more than

E[T] ≤ 12λ

∆
+

96

∆2

ℓ∑
j=0

(
λ ln

(
6∆λ

4 + z(j,1)∆λ

)
+

1

z(j,1)

)

+
96

∆2

ℓ−1∑
j=0

(
λ ln

(
6∆λ

4 + z(j,2)∆λ

)
+

1

z(j,2)

)
+

96

∆2

(
λ ln

(
6∆λ

4 + z(ℓ,2)∆λ

)
+

1

z(ℓ,2)

)
+

96

∆2

n−1∑
j=ℓ+1

(
λ ln

(
6∆λ

4 + z(j,1)∆λ

)
+

1

z(j,1)

)
= O

(
λ+ (ℓ+ 1) (λ log(n) + n) + ℓ (λ log(n) + n)

+
(
λ log(n) + n3

)
+ (n− ℓ− 2)

(
λ log(n) + n2

))
= O(nλ log(n) + n3).

For case (B) ℓ ≥ n − 1, we know that 1+δ
2(1−q) ≤

(
1− χhigh

n

)n−1
=
(
1− χhigh

n

)n
/(1 − o(1)).

We use the level-based theorem (Theorem 2.2.1) on the level partition applied in the proof

of Theorem 4.6.1. Condition (G2) can be verified by definitions of ∆ and γ0:

Pr
(
(y, χ′/n) ∈ A≥(j,i)+1

)
= Pr

(
(z, χ/n) ∈ A≥(j,i)+1

)
· Pr

(
(y, χ′/n) ∈ A≥(j,i)+1 | (z, χ/n) ∈ A≥(j,i)+1

)
≥ (γ2 + 2γ(1− γ))(1− q)(1− pc)

(
1− χ′

n

)n
≥ 2γ(1− γ)(1− q)(1− pc)

(
1− χhigh

n

)n
≥ γ(1 + ∆).

Condition (G1) is similar with the proof of Theorem 4.6.1. Then, we know that the runtime

is O(nλ log(n) + n2) if using population size λ > c log(n) for a sufficiently large constant c.

Therefore, the overall runtime is O(nλ log(n) + n3).

147

Chapter 4. Self-adaptation in Noisy Environments

4.7 Experiments

As a complement to our theoretical analysis, we expand our investigation to include both

the symmetric, one-bit and bit-wise noise models, as well as self-adaptation of mutation

rates within a given interval. In this section, we empirically analyse the performance of

2-tournament EAs using fixed and self-adaptive mutation rates on LeadingOnes and One-

Max under different levels of noise. Additionally, we investigate the behaviour of mutation

rates in self-adaptation under noise.

We use the parameter settings satisfying the runtimes analyses in Sections 4.4-4.6. For

fixed mutation rates, we use χhigh

n
= 1/(2n) and χlow

n
= 5/n2 which are less than the error

threshold ln(2)/n for the 2-tournament EA (Lehre, 2010). For the SA-2mr, we self-adapt

mutation rates from {χhigh

n
, χlow

n
} with a self-adaptation parameter pc = 1/(10n). For the SA,

we set self-adaptive parameters A = 1.2 and pinc = 0.4 as also utilised in Chapter 7. All

algorithms use the same population size of λ = 200 ln(n), and a uniformly sampled initial

population. For symmetric noise, we study algorithms on LeadingOnes and OneMax

with noise levels q ∈ {0.2, 0.3, 0.4} and q ∈ {0.2, 0.3, 0.4}, respectively. For one-bit noise,

we study algorithms on LeadingOnes and OneMax with noise levels q ∈ {0.4, 0.6, 0.8}

and q ∈ {0.85, 0.90, 0.95}, respectively. For bit-wise noise, we examine algorithms applied to

LeadingOnes and OneMax with noise levels p ∈ {0.8/n, 1.0/n, 1.2/n} and p ∈ {5 ln(n)/n,

6 ln(n)/n, 7 ln(n)/n}, respectively, which are set with respect to the problem size n. For each

setting, we independently run each algorithm 100 times for LeadingOnes and OneMax

with problem size n = 100 to 200 with step size 10 and n = 100 to 500 with step size 40,

respectively, and record runtimes. To monitor the behaviour of self-adaptive algorithms, we

record mutation parameters χ of individuals during each run. Additionally, we independently

perform each self-adaptive algorithm 30 times on each setting. As a comparison, we also run

the same experiments without noise. Outcomes for both the one-bit noise and bit-wise noise

148

4.7. Experiments

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150

R
u
n
ti
m

e
=n

2
(a) Noise-free

@high @low

SA-2mr SA

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150
(b) Noise level q = 0:1

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

102

103

R
u
n
ti
m

e
=n

2

(c) Noise level q = 0:2

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

102

(d) Noise level q = 0:3

Figure 4.2: Runtimes of 2-tournament EAs on LeadingOnes under symmetric noise with

different noise levels (C = 0).

models are presented in Sections 4.7.2 and 4.7.3, respectively. Comprehensive statistical

results of the experiments can be found in Appendix A.4, including medians and hypothesis

test results.

4.7.1 Symmetric Noise

Figures 4.2-4.3 illustrate the runtimes on LeadingOnes and OneMax under symmetric

noise, respectively. The corresponding statistical results are displayed in Tables A.1-A.4 and

Tables A.5-A.8, respectively. Note that the y-axes in Figures 4.2 (c)-(d) and Figures 4.7 (a)-

(d) are log-scaled, and all runtimes are divided by n2 for LeadingOnes and n ln(n) for

OneMax, respectively. These divisions correspond to the well-known runtime results for

the LeadingOnes and OneMax function in noise-free scenarios. Note that the runtime of

149

Chapter 4. Self-adaptation in Noisy Environments

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000
1200

R
u
n
ti
m

e
=
(n

ln
(n

))
(a) Noise-free

@high @low

SA-2mr SA

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000
1200

(b) Noise level q = 0:2

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

500

1000

1500

R
u
n
ti
m

e
=(

n
ln

(n
))

(c) Noise level q = 0:3

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

103

104

105
(d) Noise level q = 0:4

Figure 4.3: Runtimes of 2-tournament EAs on OneMax under symmetric noise with differ-

ent noise levels (C = 0).

the 2-tournament EA using the high mutation rate exceeds the evaluation budget of 5× 107

for optimising LeadingOnes for n ≥ 150 under symmetric noise with noise level q = 0.2,

and for n ≥ 100 with noise level q = 0.3. Similarly, on OneMax, the runtime of the 2-

tournament EA using the high mutation rate exceeds the evaluation budget of 2 × 108 for

n ≥ 110 under symmetric noise with noise level q = 0.4.

From Theorems 3.3.8 and 3.3.6, we can conclude that the runtime of the 2-tournament EA

using the mutation rate χ/n = 0.5/n on LeadingOnes under symmetric noise is polynomial

when the noise level q < 0.1756, and exponential when q > 0.1757. Figure 4.2 supports these

theoretical results, indicating that using a high mutation rate of χ/n = 0.5/n may fail to

optimise LeadingOnes under high-level noise q ≥ 0.2. On the other hand, employing

a low mutation rate is slower than using a high mutation rate under low-level symmetric

noise (q ≤ 0.1) when optimising LeadingOnes. However, the 2-tournament EA using

150

4.7. Experiments

(a) LeadingOnes (n = 100)

8 20 40 60 80 99

Fitness Value

0%

20%

40%

60%

80%

100%
P
er

ce
n
ta

g
e

o
f
@

h
ig

h

Noise-free
q = 0:1

q = 0:2
q = 0:3

(b) OneMax (n = 100)

62 70 80 90 99

Fitness Value

0%

20%

40%

60%

80%

100%

P
er

ce
n
ta

ge
of
@

h
ig

h

Noise-free
q = 0:2

q = 0:3
q = 0:4

Figure 4.4: The percentage of χhigh

n
individuals and the highest real fitness value per gener-

ation for 2-tour’ EA with SA-2mr under symmetric noise with different noise levels (C = 0,

30 runs).

SA-2mr achieves comparable performance to the high mutation rate when the noise level

is q ≤ 0.1. Furthermore, it outperforms the low mutation rate under high-level symmetric

noise, specifically when q ≥ 0.2. Most notably, the 2-tournament EA using SA outperforms

all other algorithms across all tested noise levels.

From Figures 4.3 (a), (b), (c), it is evident that the 2-tournament EA employing a low

mutation rate is slower than using a high mutation rate under low-level symmetric noise

(i.e., q ≤ 0.3) when optimising OneMax. However, as shown in Figure 4.3 (d), the high

mutation rate may fail to optimise LeadingOnes under high-level noise, whereas employing

a low mutation rate can be more efficient. Similarly, the 2-tournament EA using SA-2mr

151

Chapter 4. Self-adaptation in Noisy Environments

(a) LeadingOnes (n = 100)

8 20 40 60 80 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0
@

Noise-free
q = 0:1

q = 0:2
q = 0:3

(b) OneMax (n = 100)

62 70 80 90 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0

@

Noise-free
q = 0:2

q = 0:3
q = 0:4

Figure 4.5: Real fitness and mutation parameter of the highest real fitness individual per

generation of 2-tour’ EA with SA under symmetric noise with different noise levels (C = 0,

30 runs).

achieves performance comparable to the high mutation rate when the noise level is q ≤

0.3. Furthermore, it outperforms the low mutation rate under high-level symmetric noise,

specifically when q = 0.4. Most notably, the 2-tournament EA using SA outperforms all

other algorithms across all tested noise levels.

Figures 4.4-4.5 present the relationships between mutation rates and real fitness values

under different levels of one-bit noise in SA-2mr and SA, respectively. The lines indicate the

median of values of 30 runs. The corresponding shadows indicate the IQRs. We observe a

decrease in the mutation rate when the noise level increases on LeadingOnes and OneMax

152

4.7. Experiments

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150

R
u
n
ti
m

e
=n

2
(a) Noise-free

@high @low

SA-2mr SA

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150
(b) Noise level q = 0:4

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

50

100

150

200

250

R
u
n
ti
m

e
=n

2

(c) Noise level q = 0:6

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

102

103

(d) Noise level q = 0:8

Figure 4.6: Runtimes of 2-tournament EAs on LeadingOnes under one-bit noise with

different noise levels.

in both self-adaptations. Particularly, using SA not only reduces the mutation rate below the

error threshold (χ/n < ln(2)/n) (Lehre, 2010), but also furthermore reduces it with respect

to the noise level on LeadingOnes and OneMax.

4.7.2 One-bit Noise

Figures 4.6-4.7 illustrate runtimes on LeadingOnes and OneMax under one-bit noise,

respectively. The corresponding statistical results are displayed in Tables A.9-A.11 and Ta-

bles A.12-A.14, respectively. Note that the y-axes in Figures 4.6 (c)-(d) and Figures 4.7 (a)-

(d) are log-scaled, and all runtimes are divided by n2 for LeadingOnes and n ln(n) for

OneMax, respectively.

From Figures 4.6 (a), (b), (c), it is evident that the 2-tournament EA employing a low

153

Chapter 4. Self-adaptation in Noisy Environments

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000

1200

R
u
n
ti
m

e
=
(n

ln
(n

))
(a) Noise-free

@high @low

SA-2mr SA

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000

1200
(b) Noise level q = 0:85

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

200

400

600

800

1000

1200

R
u
n
ti
m

e
=(

n
ln

(n
))

(c) Noise level q = 0:9

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

200

400

600

800

1000

1200
(d) Noise level q = 0:95

Figure 4.7: Runtimes of 2-tournament EAs on OneMax under one-bit noise with different

noise levels.

mutation rate is slower than using a high mutation rate under low-level one-bit noise (i.e.,

q ≤ 0.6) when optimising LeadingOnes. Conversely, utilising a high mutation rate results

in faster optimisation. However, as shown in Figure 4.6 (d), the high mutation rate may fail to

optimise LeadingOnes under high-level noise. Note that the runtime of the 2-tournament

EA utilising a high mutation rate exceeds the evaluation budget of 2× 108 when optimising

LeadingOnes for n ≥ 170 under one-bit noise with noise level q = 0.8. Specifically, the

runtimes of using a high mutation rate increase sharply as the problem size grows under

high-level one-bit noise (q = 0.8), whereas employing a low mutation rate can be more

efficient. This observation is consistent with the theoretical study presented in Section 4.4.

On the other hand, the 2-tournament EA using SA-2mr achieves performance comparable

to the high mutation rate when the noise level is q ≤ 0.4 and is only slightly slower than

the high mutation rate when the noise level is q = 0.6. Furthermore, it outperforms the low

mutation rate under high-level one-bit noise, specifically when q = 0.8. Most notably, the

154

4.7. Experiments

(a) LeadingOnes (n = 100)

8 20 40 60 80 99

Fitness Value

0%

20%

40%

60%

80%

100%
P
er

ce
n
ta

g
e

o
f
@

h
ig

h

Noise-free
q = 0:4

q = 0:6
q = 0:8

(b) OneMax (n = 100)

62 70 80 90 99

Fitness Value

0%

20%

40%

60%

80%

100%

P
er

ce
n
ta

ge
of
@

h
ig

h

Noise-free
q = 0:85

q = 0:9
q = 0:95

Figure 4.8: The percentage of χhigh

n
individuals and the highest real fitness value per gener-

ation for 2-tour’ EA with SA-2mr under one-bit noise with different noise levels (30 runs).

2-tournament EA using SA outperforms all other algorithms across all tested noise levels.

In Figure 4.7, which presents results on the OneMax problem, both the high mutation rate

EA and self-adaptive EAs outperform the low mutation rate EA across all noise levels. The

efficiency of the high mutation rate under high-level noise on OneMax can be explained by

Theorem 3.3.1, which states that the 2-tournament EA with a constant mutation parameter

χ can achieve the optimum in expected time O(n log(n)) on OneMax under any level of

one-bit noise. Despite this, the 2-tournament EA using SA-2mr is only marginally slower

than the high mutation rate for all noise levels, and using SA results in faster performance

compared to all others.

155

Chapter 4. Self-adaptation in Noisy Environments

(a) LeadingOnes (n = 100)

8 20 40 60 80 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0
@

Noise-free
q = 0:4

q = 0:6
q = 0:8

(b) OneMax (n = 100)

62 70 80 90 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0

@

Noise-free
q = 0:85

q = 0:9
q = 0:95

Figure 4.9: Real fitness and mutation parameter of the highest real fitness individual per

generation of 2-tour’ EA with SA under one-bit noise with different noise levels (30 runs).

Similar with Section 4.7.1, Figures 4.8-4.9 show a decrease in the mutation rate when the

noise level increases on LeadingOnes in both self-adaptations.

4.7.3 Bit-wise Noise

Figures 4.10-4.11 illustrate runtimes on LeadingOnes and OneMax under bit-wise noise,

respectively. The corresponding statistical results are displayed in Tables A.16-A.17 and

Tables A.18-A.20, respectively. Note that the y-axes in Figures 4.11 (c)-(d) are log-scaled.

In Figure 4.10, we observe that the 2-tournament EA employing SA-2mr is faster than

the low mutation rate and slower than the high mutation rate for noise levels p = 0.8/n

156

4.7. Experiments

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150

R
u
n
ti
m

e
=n

2
(a) Noise-free

@high @low

SA-2mr SA

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150

200

250
(b) Noise level p = 0:8=n

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

50

100

150

200

250

R
u
n
ti
m

e
=n

2

(c) Noise level p = 1:0=n

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

200

400

600

800

1000
(d) Noise level p = 1:2=n

Figure 4.10: Runtimes of 2-tournament EAs on LeadingOnes under bit-wise noise with

different noise levels.

and 1.0/n, but the gap is not substantial. Consistent with previous observations in the

one-bit noise model, under high-level noise p = 1.2/n, using SA-2mr outperforms all static

algorithms. Note that the runtime of the 2-tournament EA utilising a high mutation rate

exceeds the evaluation budget of 2 × 108 when optimising LeadingOnes and OneMax

for n ≥ 160 and n ≥ 100 under bit-wise noise with noise levels p = 1.2/n and 7 ln(n)/n,

respectively. Furthermore, the 2-tournament EA using SA consistently achieves the best

performance regardless of the noise level. In Figure 4.11, the 2-tournament EA employing SA-

2mr demonstrates better performance than the low mutation rate. Additionally, it exhibits

comparable performance to the high mutation rate when the noise level is p = 5 ln(n)/n

and faster performance for other noise levels, namely p = 6 ln(n)/n and 7 ln(n)/n. As

always, the 2-tournament EA using SA demonstrates consistently the best performance in

this setting. Similar to the results of symmetric and one-bit noise, Figures 4.12-4.13 show

157

Chapter 4. Self-adaptation in Noisy Environments

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000

1200
R

u
n
ti
m

e
=
(n

ln
(n

))
(a) Noise-free

@high @low

SA-2mr SA

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

1000

2000

3000

4000

5000

6000
(b) Noise level q = 5 ln(n)=n

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

2000

4000

6000

8000

10000

12000

R
u
n
ti
m

e
=
(n

ln
(n

))

(c) Noise level q = 6 ln(n)=n

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

1000

2000

3000

4000

5000

6000
(d) Noise level q = 7 ln(n)=n

Figure 4.11: Runtimes of 2-tournament EAs on OneMax under bit-wise noise with different

noise levels.

that self-adaptive EAs self-adapt the mutation rate to the noise level.

4.8 Conclusion

In this chapter, we conducted runtime analysis and empirical analysis on the 2-tournament

EAs with self-adaptive mutation rates in a noisy environment. Although the noise model

examined in the theoretical study is relatively simplistic and artificial, our findings still

provide a compelling indication that the self-adaptive EA remarkably adapts to the presence

of noise. The empirical results further affirm that self-adaptation can adjust mutation rates

according to noise, thereby leading to more efficient optimisation than other algorithms.

158

4.8. Conclusion

(a) LeadingOnes (n = 100)

8 20 40 60 80 99

Fitness Value

0%

20%

40%

60%

80%

100%
P
er

ce
n
ta

g
e

o
f
@

h
ig

h

Noise-free
p = 0:8=n

p = 1:0=n
p = 1:2=n

(b) OneMax (n = 100)

62 70 80 90 99

Fitness Value

0%

20%

40%

60%

80%

100%

P
er

ce
n
ta

ge
of
@

h
ig

h

Noise-free
p = 5 ln(n)=n

p = 7 ln(n)=n
p = 8 ln(n)=n

Figure 4.12: The percentage of χhigh

n
individuals and the highest real fitness value per gener-

ation for 2-tour’ EA with SA-2mr under bit-wise noise with different levels (30 runs).

159

Chapter 4. Self-adaptation in Noisy Environments

(a) LeadingOnes (n = 100)

8 20 40 60 80 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0
@

Noise-free
p = 0:8=n

p = 1:0=n
p = 1:2=n

(b) OneMax (n = 100)

62 70 80 90 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0

@

Noise-free
p = 5 ln(n)=n

p = 7 ln(n)=n
p = 8 ln(n)=n

Figure 4.13: Real fitness and mutation parameter of the highest real fitness individual per

generation of 2-tour’ EA with SA under bit-wise noise with different noise levels (30 runs).

160

4.8. Conclusion

161

162

Chapter Five

Self-adaptation on

Dynamic Optimisation

Authors: Per Kristian Lehre and Xiaoyu Qin

This chapter is based on the following publication:

Self-adaptation Can Help Evolutionary Algorithms Track Dynamic Optima (Lehre and Qin,

2023a) which is published in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO’23).

163

Chapter 5. Self-adaptation on Dynamic Optimisation

5.1 Introduction

EAs can solve a wide variety of dynamic optimisation problems, where the objective function

changes over time (Jin and Branke, 2005). In this context, algorithms need to adapt and up-

date solutions quickly since previously best solutions might no longer be good. As introduced

in Section 2.3.3.2, many rigorous analyses of EAs and other randomised search heuristics in

dynamic environments have been published in the previous two decades. Changes in the

objective function could lead to modifications in the appropriate parameter settings. There-

fore, dynamic parameter settings might be necessary for dynamic optimisation problems.

Self-adaptation could contribute to the control of parameters during optimisation. As dis-

cussed in Section 2.3.2, an empirical study illustrated that the self-adaptive parameter control

mechanism could effectively respond to changes in the fitness function, transitioning from

OneMax to ZeroMax (Smith, 2001). However, the benefit of self-adaptation on dynamic

optimisation problems remains unknown.

In this chapter, we explore whether self-adaptation can be beneficial in dynamic optimisa-

tion. We specifically examine a tracking dynamic optima problem with changing structure

that requires adjustable parameter settings. The structure, as previously discussed, refers

to the number of relevant bits. This problem, the so-called Dynamic Substring Matching

(DSM) problem, requires algorithms to successively find and hold the solutions that match

a sequence of bit-flipping and length-varying target substrings (structure-changing optima)

within specified evaluation budgets. We show that EAs with any fixed mutation rate get lost

with constant probability somewhere during tracking the DSM problem (Lemma 5.5.1), re-

sulting in an exponentially small probability of achieving the final optimum (Theorem 5.5.1).

Therefore, variable mutation rates may be necessary to successfully track the optimum.

The primary contribution of this work lies in conducting the first rigorous study of self-

adaptive parameter control mechanisms in dynamic optimisation. We analyse the (µ, λ) self-

164

5.2. Dynamic Substring Matching Problem

adaptive EA, an algorithm studied in (Case and Lehre, 2020) and described as Algorithm 7

employing the fitness-first sorting partial order with a preference for high mutation rate

(Definition 2.2.4(b)), the (µ, λ) selection (Algorithm 9), and the self-adapting mutation rate

strategy presented in Algorithm 10 on solving the DSM problem. Our study shows that

this algorithm can track every optimum in the DSM problem (Lemma 5.4.1) and achieve

the final optimum with an overwhelmingly high probability (Theorem 5.4.1). Conversely,

we demonstrate that static mutation-based EAs (both Algorithms 2 and 3) struggle with

tracking the DSM problem.

Another contribution is a level-based theorem with tail bounds (Theorem 5.3.1). To

assess the capacity of the self-adaptive EA in tracking dynamic optima, it is necessary to

determine a lower bound of the probability of achieving the current optimum within the

specified evaluation budget. To address our requirements, we develop a level-based theorem

with tail bounds.

The chapter is organised as follows: Section 5.2 introduces the DSM function. Section 5.3

develops a level-based theorem with tail bounds for later analysis. Sections 5.4-5.5 demon-

strate that the (µ, λ) self-adaptive EA can track dynamic optima of the DSM function, and

show the inefficiency of static mutation-based EAs, respectively. The chapter concludes in

Section 5.6.

5.2 Dynamic Substring Matching Problem

In dynamic environments, the number of pertinent bits may fluctuate (structure changing).

This chapter considers the DSM problem, which involves this situation. Let ε ∈ (0, 1), k > 0,

κ ∈ {0, 1}ℓ1 where ℓ1 ∈ [n − 1], and m ∈ [n − ℓ1] be the parameters of the DSM problem,

then the DSMκ,m,ε,k problem aims to match a sequence of bit-flipping and length-varying

165

Chapter 5. Self-adaptation on Dynamic Optimisation

target substrings (κi)i∈[4m] in a sequence of corresponding evaluation budgets (Ti)i∈[4m]. The

length of target substrings varies between ℓ1 and ℓ2 where ℓ2 = ℓ1 +m resulting in structure

changing. The dynamics of the DSM problem is updated in four phases.

1. for i ∈ [m], the previous target substring κi−1 and the current target substring κi are

the same length but one bit different: κi generated by uniformly at random change

one bit of κi−1;

2. for i ∈ [m + 1..2m], the target substrings are becoming longer: κi generated by ap-

pending one random bit in the end of κi−1;

3. for i ∈ [2m+ 1..3m], similar to stage (1): κi−1 and κi are the same length but one-bit

different;

4. for i ∈ [3m + 1..4m], the target substrings are becoming shorter: κi−1 generated by

removing the last bit of κi−1 and uniformly at random flip one of the rest of bits.

Figure 5.1 illustrates a sequence of target substrings in an example DSM problem. The

sequence of corresponding evaluation budgets (Ti)i∈[4m] depends on the lengths of the target

substrings, i.e., knε|κi|. The target substrings are changed after evaluation budgets run

out. We call a period between two times of the target change a phase. We assume that

the algorithms start from a starting substring κ0. The algorithms are required to find and

hold solutions matching the current target substring before the target changes. The DSM

problem is formally defined in Definition 5.2.1.

Definition 5.2.1. Let κ be some starting target substring where |κ| =: ℓ1 ∈ [n− 1], and m

be a positive integer where ℓ1 +m =: ℓ2 ≤ n. Let (κi)i≥0 be a sequence of target substrings

166

5.2. Dynamic Substring Matching Problem

ϰ1
ϰ2
ϰ3

ϰ0
ℓ1=10

1111111111 |
m=4⏞1111

1111111110 |
1111111100 |
1111111000 |

0000111111 |1111
ℓ2=14

(1)
ϰ4 1111110000 |
ϰ5
ϰ6
ϰ7

1111110000 |1
1111110000 |10
1111110000 |101(2)

ϰ8 1111110000 |1011
ϰ9
ϰ10
ϰ11

0111110000 |1011
0011110000 |1011
0001110000 |1011(3)

ϰ12 0000110000 |1011
ϰ13
ϰ14
ϰ15

0000110001 |101
0000110011 |10
0000110111 |1(4)

ϰ16

<latexit sha1_base64="zQqirNqe4ux5tZZhaGx2SsjTZDU=">AAACH3icbVBNSyNBEO3R9St+xfXopTEIegkzotFjcC8eFY0KmTHUdGpik56eobsmGIb8Ey/+FS8edhHx5r/ZTsxh1X1Q8Hiviqp6ca6kJd9/92Zmf8zNLywuVZZXVtfWqxs/r2xWGIEtkanM3MRgUUmNLZKk8CY3CGms8Dru/xr71wM0Vmb6koY5Rin0tEykAHJSp9oICe+pDOOEX4LpIfGLIrZkpO5ZPtoNB2D6kOdwK/c6pQyl5u2gEY061Zpf9yfg30kwJTU2xVmn+hZ2M1GkqEkosLYd+DlFJRiSQuGoEhYWcxB96GHbUQ0p2qic/DfiO07p8iQzrjTxifrvRAmptcM0dp0p0J396o3F/3ntgpLjqJQ6Lwi1+FiUFIpTxsdh8a40KEgNHQFhpLuVizswIMhFWnEhBF9f/k6u9utBo354flBrnkzjWGRbbJvtsoAdsSY7ZWesxQR7YE/sN/vjPXrP3ov3+tE6401nNtkneO9/ASQ3owU=</latexit> T
a
rg

e
t

S
u
b
st

ri
n
g
s

({
i)

i2
[1

6
]

Figure 5.1: A sequence of target substrings in an example of DSMκ,m,ε,k (κ = 110, n = 20,

m = 4), s.t. ℓ1 = 10 and ℓ2 = 14.

generated by

κi :=



κ if i = 0,

z, where z ∼ Unif(N(κi−1)) if 1 ≤ i ≤ m,

κi−1 ⋄ a, where a ∼ Unif({0, 1}) if m+ 1 ≤ i ≤ 2m,

z, where z ∼ Unif(N(κi−1)) if 2m+ 1 ≤ i ≤ 3m,

z, where z ∼ Unif
(
N
(
κi−1

1:(|κi−1|−1)

))
if 3m+ 1 ≤ i ≤ 4m.

(5.1)

Let (Ti)i∈N be a sequence of the numbers of evaluation moving from κi−1 to κi (evaluation

budget for κi) generated by Ti := knε|κi+1|, where ε ∈ (0, 1) and k > 0 are some constants.

For t ∈ N, the dynamic substring matching (DSM) problem with the starting target substring

167

Chapter 5. Self-adaptation on Dynamic Optimisation

κ is defined as:

DSMκ,m,ε,k
t (x) :=


2 if M(κ(t), x) = 1,

1 else if M(κ′(t), x) = 1,

0 otherwise,

(5.2)

where κ(t) := κi, and κ′(t) := κi−1, for i =


1 if t ≤ T1,

1 + max
{
j |
∑j

i=1 Ti ≤ t
}

otherwise.

Several methods to evaluate how well algorithms track dynamic optima have been proposed

(Dang et al., 2017; Kötzing and Molter, 2012). Regarding the DSM problem, algorithms

may fail to reach the final optimum if they lose track during some phases. Therefore, we

define the criteria for tracking in Definition 5.2.2.

Definition 5.2.2. A sequence of sets of solutions (Qτ)τ∈N, where Qτ ∈ X λ and λ ∈ N, tracks

the DSMκ,m,ε,k if it begins with the initial set Q0, where all solutions x satisfy M(x,κ) = 1,

and at least one solution x′ in Qτ̄ satisfies M(x′,κ4m) = 1, where τ̄ = ⌈(
∑4m

i=1 Ti)/λ⌉ denotes

the end of the final phase.

5.3 Level-based Theorem (Tail Bounds)

The level-based theorems (Corus et al., 2018; Dang et al., 2021b; B. Doerr and Kötzing,

2021) are general tools that provide an upper bound of the runtime of non-elitist algorithms

which follow the scheme of Algorithm 11 with a population Pτ ∈ X λ, where X λ is the

space of all populations of size λ (see Section 2.2.3.1). We employ the same notations as

described in Section 2.2.3.1: Assume that the search space X is partitioned into ordered

disjoint subsets (called levels) A1, . . . , Am. Let A≥j := ∪mk=jAk be the search points in

level j and higher, and let D be some mapping from the set of all possible populations

168

5.3. Level-based Theorem (Tail Bounds)

X λ into the space of probability distributions of X . Given any subset A ⊆ X , we define

|Pτ ∩ A| := |{i | Pτ (i) ∈ A}|, i.e., the number of individuals in Pτ that belong to A. To

estimate an upper bound on the runtime using level-based theorems, three conditions must

typically be satisfied: (G1) requires the probability of level “upgrading”, i.e., creating an

individual in higher levels; (G2) requires the probability of the number of individuals in

higher levels “growing”; (G3) requires a sufficient population size. Specifically, in (Dang et

al., 2021b), a new level-based theorem has been proposed to address the issue of “deceptive”

regions B that contains individuals with a higher selection probability but at a lower level.

The theorem includes an additional condition (G0) that requires the probability of producing

a “deceptive” individual to decrease if too many such individuals are in the population.

In the theory of EC, besides the expected runtime, tail bounds can be other performance

criteria of EAs, which indicate the probability of runtime within a given evaluation budget.

Several theoretical tools were developed to derive tail bounds on the runtime of EAs (B.

Doerr and L. A. Goldberg, 2010; Lehre and Sudholt, 2020; Lehre and Witt, 2021; Oliveto

and Witt, 2011). In this chapter, we are interested in the probability that an algorithm finds

the current optimum in a specific evaluation budget. To address our requirements, we derive

a level-based theorem with tail bounds (shown in Theorem 5.3.1). We assume that the search

space X partitions intoB,A0, A1, . . . , Am, then assume that the initial population P0 contains

sufficient individuals in level A1 and the termination condition is to gain a population with

enough individuals in Am. Theorem 5.3.1 also considers a “deceptive region” B (condition

(C0)). The assumption that there are not too many individuals in the region B holds for the

initial population , i.e., |P0∩B| ≤ ψ0λ. Conditions (C1)-(C2) correspond to conditions (G1)-

(G2) in the original level-based theorems (Corus et al., 2018; Dang et al., 2021b; B. Doerr

and Kötzing, 2021), and no condition corresponds to condition (G3) since the tail bound

is determined by the population size λ. Eventually, Theorem 5.3.1 gives the lower bound

of the probability of runtime within ηT evaluation times by choosing η and λ. Compared

169

Chapter 5. Self-adaptation on Dynamic Optimisation

to the original level-based theorems, the runtime from Theorem 5.3.1 is mainly one more

multiplicative factor ηλ17/δ3 , where η is used to tune the upper bound for Pr(T ≤ ηT). In

order to fulfil the requirements into our scenario in Section 5.4, we refrain from employing

the multiple restarts argument that was utilised in the proofs of the original level-based

theorems (B. Doerr and L. A. Goldberg, 2010; Lehre and Sudholt, 2020; Lehre and Witt,

2021; Oliveto and Witt, 2011).

Theorem 5.3.1. Let (B,A0, A1, . . . , Am) be a partition of X . Suppose there exist z1, . . . , zm−1,

δ ∈ (0, 1), and γ0, ψ0 ∈ (0, 1), such that the following conditions hold for any population

P ∈ X λ in Algorithm 11,

(C0) for all ψ ∈ [ψ0, 1], if |P ∩B| ≤ ψλ, then

Pr
y∼D(P)

(y ∈ B) ≤ (1− δ)ψ,

(C1) for all j ∈ [m− 1], if |P ∩B| ≤ ψ0λ and |P ∩ A≥j| ≥ γ0λ, then

Pr
y∼D(P)

(y ∈ A≥j+1) ≥ zj,

(C2) for all j ∈ [0..m − 1], and γ ∈ [1/λ, γ0] if |P ∩ B| ≤ ψ0λ and |P ∩ A≥j| ≥ γ0λ and

|P ∩ A≥j+1| ≥ γλ, then

Pr
y∼D(P)

(y ∈ A≥j+1) ≥ (1 + δ)γ.

Let T := min{τλ | |Pτ ∩ Am| ≥ γ0λ and |Pτ ∩ B| ≤ ψ0λ}, and assume the algorithm

with population size λ ∈ N and an initial population P0 satisfying |P0 ∩ A1| ≥ γ0λ and

|P0 ∩B| ≤ ψ0λ, then

Pr (T ≤ ητ) >
(
1− 2ητe−δ

2 min{ψ0,γ0}λ/4
)(

1−me−ηρ
− ln(γ0)

ln(1+δ/2)
−2

)

for any η ∈
(
0, eδ

2 min{ψ0,γ0}λ/4/T
)
, where

ρ =
eδ

2/8

eδ2/8 − 1
and T := λ17/δ

3

(
m−1∑
j=1

1

zj
+mλ

(
ln(γ0λ)

ln(1 + δ/2)
+ 1

))
.

170

5.3. Level-based Theorem (Tail Bounds)

To apply Theorem 5.3.1, we need to satisfy conditions (C0)-(C2), which is the same as

applying the original level-based theorems, then we need to choose η and λ to gain a desired

upper bound for Pr(T ≤ ηT). For example, if conditions (C0)-(C2) hold for some constants

δ, ψ0, γ0 ∈ (0, 1), zj := Ω(1/n) andm ∈ poly(n) by an instantiated algorithm with population

size λ, then the upper bound for Pr(T ≤ ηT) is
(
1− ηT e−Ω(λ)

) (
1−me−Ω(η)

)
. If choosing

λ = η = nε for a constant ε ∈ (0, 1), then Pr(T ≤ ηT) = 1 − e−Ω(nε). In Section 5.4,

we will use Theorem 5.3.1 to prove that the (µ, λ) self-adaptive EA can generate enough

individuals matching the current target substring in evaluation budgets from the previous

target substring with an overwhelmingly high probability. In comparison to the original

level-based theorems, Theorem 5.3.1 typically necessitates a larger population size, e.g., cnε,

in order to achieve a sufficiently large tail probability, i.e., 1 − e−Ω(nε), where constants

c, ε > 0.

Now we informally explain the proof idea. Pessimistically, the algorithm gradually in-

creases its level from A1 to Am. There are m steps from A1 to Am. In each step, the

algorithm needs to generate a higher-level individual, and then accumulate such individuals

until the population contains a sufficient number of such individuals. We estimate the lower

bound of the successful probability of each step in certain evaluation times. Next, we consider

the probability of the “failure events”, i.e., the algorithm goes back to the previous level, or

produces too many “bad” (B region) individuals during the algorithm running. Eventually,

we compute the lower bound of the probability that every step is completed without “failure

events”.

Proof of Theorem 5.3.1. We first define some notation for later use. For any level j ∈ [m]

and τ ∈ N0, let the random variable X(j)
τ := |Pτ ∩ A≥j| denote the number of individuals

in levels A≥j at time τ . Let the random variable Yτ := |Pτ ∩ B| denote the number of

individuals in the region B at time τ . The level Jτ of population Pτ at time τ is defined as

171

Chapter 5. Self-adaptation on Dynamic Optimisation

Jτ := max{j ∈ [m] : Xj
τ ≥ γ0λ}. We say the algorithm upgrades its level in h generations if

Jτ+h ≥ Jτ + 1.

We now estimate the probability that no “failure events” occur. More precisely, “failure

events” include less than γ0λ individuals of population Pτ in level A≥Jτ−1 and more than

ψ0λ individuals of population Pτ in the region B. Given τ ≥ 1, let Eτ be the event that

Jτ ≥ Jτ−1 and Yτ ≤ ψ0λ, and define Êτ := E1 ∧ . . . ∧ Eτ . By condition (C2), the random

variable (X
(Jτ−1)
τ | Êτ−1) stochastically dominates Z ∼ Bin(λ, (1 + δ)γ0). By condition (C0),

the random variable (Yτ | Êτ−1) is stochastically dominated by Z ′ ∼ Bin(λ, (1 − δ)ψ0).

Therefore, using a union bound, we have

Pr
(
Êτ | Êτ−1

)
≥ 1− Pr

(
Jτ < Jτ−1 | Êτ−1

)
− Pr

(
Yτ > ψ0λ | Êτ−1

)
= 1− Pr

(
X(Jτ−1)
τ < γ0λ | Êτ−1

)
− Pr

(
Yτ > ψ0λ | Êt−1

)
≥ 1− Pr (Z < γ0λ)− Pr (Z ′ > ψ0λ) .

We then use Chernoff bounds to estimate the upper bounds of Pr (Z < γ0λ) and Pr (Z ′ > ψ0λ):

Pr (Z < γ0λ) = Pr

(
Z < γ0λ(1 + δ)

(
1− δ

1 + δ

))
= Pr

(
Z < E[Z]

(
1− δ

1 + δ

))
< e

− δ2

(1+δ)2
E[Z]/2

= e−
δ2γ0λ
2(1+δ)

< e−δ
2γ0λ/4,

172

5.3. Level-based Theorem (Tail Bounds)

and

Pr (Z ′ > ψ0λ) = Pr

(
Z ′ > ψ0λ(1− δ)

(
1 +

δ

1− δ

))
= Pr

(
Z ′ > E[Z ′]

(
1 +

δ

1− δ

))
< e

− δ2

(1−δ)2
E[Z′]/(2+ δ

1−δ)

= e−
δ2ψ0λ
1−δ /(2+ δ

1−δ)

< e−
δ2ψ0λ
2−δ

< e−δ
2ψ0λ/2.

Thus,

Pr
(
Êτ | Êτ−1

)
> 1− e−δ2γ0λ/4 − e−δ2ψ0λ/2

≥ 1− 2e−δ
2 min{γ0,ψ0}λ/4. (5.3)

Next, we consider the number of generations to increase the level of the algorithm. We

note that, by condition (C2), the random variable (X
(Jτ+1)
τ+1 | X(Jτ+1)

τ ≥ γλ, Êτ) stochastically

dominates Z ′′ ∼ Bin (λ, (1 + δ)min{γ, γ0}) for any γλ ≥ 1. Therefore, if 1 ≤ γλ ≤ γ0λ, we

have

Pr
(
X

(Jτ+1)
τ+1 ≥ (1 + δ/2)γλ | X(Jτ+1)

τ ≥ γλ, Êτ
)
≥Pr (Z ′′ ≥ (1 + δ/2)γλ)

=1− Pr (Z ′′ < (1 + δ/2)γλ)

=1− Pr

(
Z ′′ < (1 + δ)γλ

(
1− δ

2(1 + δ)

))
=1− Pr

(
Z ′′ < E[Z ′′]

(
1− δ

2(1 + δ)

))

173

Chapter 5. Self-adaptation on Dynamic Optimisation

then by a Chernoff bound,

>1− e−
δ2

4(1+δ)2
E[Z′′]

=1− e−
δ2γλ

4(1+δ)2

>1− e−δ2γλ/8

≥1− e−δ2/8.

Then we define h := ⌈log1+δ/2 (γ0λ)⌉ ≤ ln(γ0λ)/ ln(1 + δ/2) + 1. Informally, h is the number

of consecutive “growing” steps required for the algorithm to upgrade its level. If there exists

an individual of the population Pτ in level A≥Jτ+1, then the probability of the algorithm

upgrading its level in h generations is at least

Pr
(
X

(Jτ+1)
τ+h ≥ γ0λ | X(Jτ+1)

t ≥ 1, Êτ+h−1

)
≥

h∏
i=1

Pr
(
X

(Jτ+1)
τ+i ≥ (1 + δ/2)i | X(Jτ+1)

τ+i−1 ≥ (1 + δ/2)i−1, Êτ+i−1

)
≥

h∏
i=1

(
1− e−δ2/8

)
=
(
1− e−δ2/8

)h
=ρ−h

where we define ρ := eδ
2/8

eδ
2/8−1

> 1/(1− 1/e) by δ ∈ (0, 1).

Then, we note that by condition (C1) and following by (1+x/n)n ≤ ex for n ≥ 1, |x| ≤ n,

for any t,

Pr
(
∃sj ≤ ⌈1/(zjλ)⌉ : X(Jτ+1)

τ+sj ≥ 1 | Êτ+sj−1

)
≥ 1− (1− zj)λ⌈1/(zjλ)⌉

≥ 1− 1/e

> ρ−1.

Thus, if we define q(j) := ⌈1/(zjλ)⌉ + h, we obtain the following lower bound for the

174

5.3. Level-based Theorem (Tail Bounds)

probability of the algorithm upgrading its level in q(j) generations,

Pr
(
Jτ+q(Jτ) ≥ Jτ + 1 | Êτ+q(Jτ)−1

)
≥Pr

(
∃sj ≤ ⌈1/(zjλ)⌉ : X(Jτ+1)

τ+sj ≥ 1 | Êτ+sj−1

)
· Pr

(
X

(Jτ+1)
τ+q(Jτ)

≥ γ0λ | XJτ+1
τ ≥ 1, Êt+q(Jτ)−1

)
≥ρ−h−1.

In particular, we have the following upper bound for the probability that the algorithm does

not upgrade its level in ηλ17/δ3q(Jτ) generations,

Pr
(
Jτ+ηλ17/δ3q(Jτ) ≤ Jτ | Êt+ηλ17/δ3q(Jτ)

)
≤
(
1− ρ−h−1

)ηλ17/δ3
.

Define q̂(j) := ηλ17/δ
3∑j

i=1 q(i), and note that T ≥ q̂(m− 1)λ/η. We then have

Pr
(
T ≤ ηT | ÊηT

)
≥ Pr

(
m−1⋂
j=1

(
Jq̂(j) ≥ j + 1

)
| ÊηT

)

= 1− Pr

(
m−1⋃
j=1

(
Jq̂(j) < j + 1

)
| ÊηT

)
by a union bound,

≥ 1−
m−1∑
j=1

Pr
(
Jq̂(j) < j + 1 | Jq̂(j−1) ≥ j, ÊηT

)
≥ 1−

m−1∑
j=1

Pr
(
Jq̂(j) < j + 1 | Jq̂(j−1) = j, ÊηT

)
= 1−

m−1∑
j=1

Pr
(
Jq̂(j−1)+ηλ17/δ

3
q(j) ≤ j | Jq̂(j−1) = j, ÊηT

)
≥ 1−m

(
1− ρ−h−1

)ηλ17/δ3
.

Recall Eq. (5.3), we know that, using the Bernoulli’s inequality (1 + x)r ≥ 1 + rx for

−1 < x < 0 and r ∈ N0,

Pr
(
ÊηT
)
≥

ηT∏
τ=1

Pr
(
Êτ | Êτ−1

)
≥
(
1− 2e−δ

2 min{γ0,ψ0}λ/4
)ηT

≥ 1− 2ηT e−δ2 min{γ0,ψ0}λ/4.

175

Chapter 5. Self-adaptation on Dynamic Optimisation

Hence,

Pr (T ≤ ηT) ≥ Pr
(
T ≤ ηT | ÊηT

)
· Pr

(
ÊηT
)

≥
(
1−m

(
1− ρ−h−1

)ηλ17/δ3) · (1− 2ηT e−δ2 min{γ0,ψ0}λ/4
)
.

Since

ρ−h−1 ≥ ρ−
ln(γ0λ)

ln(1+δ/2)
−2

≥ ρ−
ln(γ0)

ln(1+δ/2)
− ln(λ)

ln(1+δ/2)
−2

= ρ−
ln(γ0)

ln(1+δ/2)
−2λ

− 1
logρ(e) ln(1+δ/2)

= ρ−
ln(γ0)

ln(1+δ/2)
−2λ−

δ2/8−ln(eδ
2/8−1)

ln(1+δ/2)

≥ ρ−
ln(γ0)

ln(1+δ/2)
−2λ

− δ2/8+8/(2δ2)

δ/2−δ2/4

≥ ρ−
ln(γ0)

ln(1+δ/2)
−2λ−17/δ3 ,

then by (1 + x/n)n ≤ ex for n ≥ 1, |x| ≤ n,

Pr (T ≤ ηT) ≥

(
1−me−ηρ

− ln(γ0)
ln(1+δ/2)

−2

)(
1− 2ηT e−δ2 min{γ0,ψ0}λ/4

)
.

5.4 The Self-adaptive EA on DSM

We now show that the (µ, λ) self-adaptive EA can track the DSM problem. To prove this,

we first derive Lemma 5.4.1 which shows that the algorithm obtains a population with a

sufficient number of individuals matching the current target substring within the evaluation

budget with an overwhelming probability in a phase if it successfully tracks in the previous

phases. Then, Theorem 5.4.1 via Lemma 5.4.1 states the efficiency of the (µ, λ) self-adaptive

EA on solving the DSM problem.

176

5.4. The Self-adaptive EA on DSM

B

θ1(|ϰ1 |)

θ2(|ϰ1 |)
θ2(|ϰ2 |)

1
2

A1ε
A0ε

A2ε

η(|ϰ1 |)

A(2,1)

A(1,1)
A(1,2)
A(2,3)

A(1,d1)

⋯⋯
⋯

M(x , ϰ2) = 1M(x , ϰ2) = 0
∧ M(x , ϰ1) = 1

B

θ1(|ϰ1 |)

θ2(|ϰ1 |)
θ2(|ϰ2 |)

1
2

A1ε
A0ε

A2ε

η(|ϰ1 |)

A(2,1)

A(1,1)
A(1,2)
A(2,3)

A(1,d1)

⋯⋯
⋯

M(x , ϰ2) = 1M(x , ϰ2) = 0
∧ M(x , ϰ1) = 1

⇒⇒

|ϰ2 | = |ϰ1 | − 1 |ϰ2 | = |ϰ1 | + 1

B

θ1(|ϰ1 |)

θ2(|ϰ1 |) θ2(|ϰ2 |)

1
2

A1ε
A0ε

A2ε

η(|ϰ1 |)

A(2,1)

A(1,1)
A(1,2)
A(2,3)

A(1,d1)

⋯⋯
⋯

M(x , ϰ2) = 1M(x , ϰ2) = 0∧ M(x , ϰ1) = 1

 (a) |ϰ2 | = |ϰ1 |

B

θ1(|ϰ1 |)

θ2(|ϰ1 |)

θ2(|ϰ2 |)

1
2

A1ε
A0ε

A2ε

η(|ϰ1 |)

A(2,1)

A(1,1)
A(1,2)
A(2,3)

A(1,d1)

⋯⋯
⋯

M(x , ϰ2) = 1M(x , ϰ2) = 0∧ M(x , ϰ1) = 1

 (b) |ϰ2 | = |ϰ1 | + 1

B

θ1(|ϰ1 |)

θ2(|ϰ1 |)
θ2(|ϰ2 |)

1
2

A1ε
A0ε

A2ε

η(|ϰ1 |)

A(2,1)

A(1,1)
A(1,2)
A(2,3)

A(1,d1)

⋯⋯
⋯

M(x , ϰ2) = 1M(x , ϰ2) = 0∧ M(x , ϰ1) = 1

 (c) |ϰ2 | = |ϰ1 | − 1

⇒ ⇒

<latexit sha1_base64="Yoq1DyElQgojS5YHmRJjBHz9+b0=">AAACE3icbVA9SwNBEN3zM8avU0ubxSCoRbgTUcugIjZCRBOFJIS9zVyyuLd37M5JwhF/g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJFIY9LwPZ2x8YnJqOjeTn52bX1h0l5arJk41hwqPZayvAmZACgUVFCjhKtHAokDCZXB9OPAvb0AbEasL7CXQiFhbiVBwhlZqult1hC4GYXYsUIExtMpkCv3boWx4Vg9CenR+2t/objbdglf0hqB/iT8iBTJCuem+11sxTyNQyCUzpuZ7CTYyplFwCf18PTWQMH7N2lCzVLEITCMb/tSn61Zp0TDWthTSofp9ImORMb0osJ0Rw4757Q3E/7xaiuF+IxMqSREU/1oUppJiTAcB0ZbQwFH2LGFcC3sr5R2mGUcbY96G4P9++S+pbhf93eLO2U6hdDCKI0dWyRrZID7ZIyVyQsqkQji5Iw/kiTw7986j8+K8frWOOaOZFfIDztsnj1eekA==</latexit>

Fitness Value DSM(x)

<latexit sha1_base64="tE5ZvsNGHBSIM6Cgrz6AAGtGdrY=">AAAB/3icbVDLSgNBEJz1GeMrKnjxMhgET2FXgnoMevEiRDEPSJYwO+lNhsw+mOkVw5qDv+LFgyJe/Q1v/o2TZA+aWNBQVHXT3eXFUmi07W9rYXFpeWU1t5Zf39jc2i7s7NZ1lCgONR7JSDU9pkGKEGooUEIzVsACT0LDG1yO/cY9KC2i8A6HMbgB64XCF5yhkTqF/TbCA3p+ep3gRKK3DGHUKRTtkj0BnSdORookQ7VT+Gp3I54EECKXTOuWY8fopkyh4BJG+XaiIWZ8wHrQMjRkAWg3ndw/okdG6VI/UqZCpBP190TKAq2HgWc6A4Z9PeuNxf+8VoL+uZuKME4QQj5d5CeSYkTHYdCuUMBRDg1hXAlzK+V9phhHE1nehODMvjxP6icl57RUvikXKxdZHDlyQA7JMXHIGamQK1IlNcLJI3kmr+TNerJerHfrY9q6YGUze+QPrM8fhDOWbg==</latexit> M
u
ta

ti
o
n

R
a
te

B

θ1(|ϰ1 |)

θ2(|ϰ1 |) θ2(|ϰ2 |)

1
2

A1ε
A0ε

A2ε

η(|ϰ1 |)

A(2,1)

A(1,1)
A(1,2)
A(1,3)

A(1,d1)
⋯⋯

⋯

|ϰ2 | = |ϰ1 |
<latexit sha1_base64="MIZfHZs/s9r7RdJdRSoC2e3CW9Y=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BItQLyWRoh6LXjxWsB/QhLLZbtqlm03YnYgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgpr6xubW8Xt0s7u3v5B+fCoreNUUdaisYhVNyCaCS5ZCzkK1k0UI1EgWCcY3878ziNTmsfyAScJ8yMylDzklKCRPA/ZEwZhViXn03654tScOexV4uakAjma/fKXN4hpGjGJVBCte66ToJ8RhZwKNi15qWYJoWMyZD1DJYmY9rP5zVP7zCgDO4yVKYn2XP09kZFI60kUmM6I4EgvezPxP6+XYnjtZ1wmKTJJF4vCVNgY27MA7AFXjKKYGEKo4uZWm46IIhRNTCUTgrv88ippX9Tcy1r9vl5p3ORxFOEETqEKLlxBA+6gCS2gkMAzvMKblVov1rv1sWgtWPnMMfyB9fkD01ORjg==</latexit>

(a)

1 2

B

θ1(|ϰ1 |)

θ2(|ϰ1 |)

θ2(|ϰ2 |)

1
2

A1ε
A0ε

A2ε

η(|ϰ1 |)

A(2,1)

A(1,1)
A(1,2)
A(2,3)

A(1,d1)

⋯⋯
⋯

|ϰ2 | = |ϰ1 | + 1<latexit sha1_base64="VWxlyy8I25VEkU7t3Y8igjtkAk0=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BItQLyWRoh6LXjxWsB/QhLLZbtqlm03YnYgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgpr6xubW8Xt0s7u3v5B+fCoreNUUdaisYhVNyCaCS5ZCzkK1k0UI1EgWCcY3878ziNTmsfyAScJ8yMylDzklKCRPA/ZEwZhVg3Op/1yxak5c9irxM1JBXI0++UvbxDTNGISqSBa91wnQT8jCjkVbFryUs0SQsdkyHqGShIx7Wfzm6f2mVEGdhgrUxLtufp7IiOR1pMoMJ0RwZFe9mbif14vxfDaz7hMUmSSLhaFqbAxtmcB2AOuGEUxMYRQxc2tNh0RRSiamEomBHf55VXSvqi5l7X6fb3SuMnjKMIJnEIVXLiCBtxBE1pAIYFneIU3K7VerHfrY9FasPKZY/gD6/MH1NmRjw==</latexit>

(b)

1 2

B

θ1(|ϰ1 |)

θ2(|ϰ1 |)
θ2(|ϰ2 |)

1
2

A1ε
A0ε

A2ε

η(|ϰ1 |)

A(2,1)

A(1,1)
A(1,2)
A(2,3)

A(1,d1)

⋯⋯
⋯

|ϰ2 | = |ϰ1 | − 1<latexit sha1_base64="v6+YjCMTPH/0na2gqrLh3GTTiQM=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BItQLyWRoh6LXjxWsB/QhLLZbtqlm03YnYgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgpr6xubW8Xt0s7u3v5B+fCoreNUUdaisYhVNyCaCS5ZCzkK1k0UI1EgWCcY3878ziNTmsfyAScJ8yMylDzklKCRPA/ZEwZhVqXn03654tScOexV4uakAjma/fKXN4hpGjGJVBCte66ToJ8RhZwKNi15qWYJoWMyZD1DJYmY9rP5zVP7zCgDO4yVKYn2XP09kZFI60kUmM6I4EgvezPxP6+XYnjtZ1wmKTJJF4vCVNgY27MA7AFXjKKYGEKo4uZWm46IIhRNTCUTgrv88ippX9Tcy1r9vl5p3ORxFOEETqEKLlxBA+6gCS2gkMAzvMKblVov1rv1sWgtWPnMMfyB9fkD1l+RkA==</latexit>

(c)

1 2

Figure 5.2: Level partitions for three cases in the proof of Lemma 5.4.1. Note that level A0

is omitted in the subfigures.

Case and Lehre (2020) proved that the runtime of the (µ, λ) self-adaptive EA on optimising

LeadingOnesk(x) :=
∑k

i=1

∏i
j=1 xj is O(k2), where k is unknown for the algorithm. They

divided the search space Y into a two-dimensional level partition, fitness levels and mutation

rate sub-levels. Informally, to estimate the runtime, they counted the number of generations

to increase the mutation rate until it is sufficiently high, and then counted the number of

generations until the solution improved. It is well-known that too high mutation rates might

fail non-elitist EAs. More precisely, there exist error thresholds for non-elitist EAs, which

lead to exponential runtime on any function with a unique optimum if the mutation rate

exceeds the threshold (additional details can be found in Section 2.2.3.2). Since the (µ, λ)

self-adaptive EA applies a non-elitist selection mechanism, they also defined a “bad” region B

which contains individuals with too high mutation rates. They assumed that the algorithms

restart from the first level if there are too many individuals in the B region. However,

algorithms cannot be allowed to restart, since algorithms should keep the previous optimal

solution in our scenario. Therefore, it is essential to limit the number of individuals in the

B region in every generation to avoid losing track while tracking the dynamic function.

Lemma 5.4.1 provides the probability of obtaining sufficient individuals matching the

177

Chapter 5. Self-adaptation on Dynamic Optimisation

current target substring κ2 in a phase of the DSMκ,m,ε,k function within a given evaluation

budget T ′
2 , by assuming that enough individuals match the previous target substring κ1 at

the beginning of the phase. Our proof idea is similar to (Case and Lehre, 2020). We first

define the level partition in a phase of the DSM problem. We partition the search space

Y into three fitness levels: A2 =: {x | M(x,κ2) = 1}, A1 =: {x | M(x,κ1) = 1}\A2, and

A0 =: X\(A2 ∪A1). We further divide A1 into mutation rate sub-levels. Finally, we use the

three threshold values θ2, η, θ1 based on the lengths of κ1,κ2 to describe mutation rate sub-

levels, which will be defined later. Informally, a mutation rate between θ1 and θ2 is suitable

for increasing fitness level, i.e., from A1 to A2. Let d1 := min
{
ℓ ∈ N | ϵAℓ ≥ θ1(|κ1|)

}
be

the number of sub-levels of A1, and let A2 only contain one sub-level A(2,1) with the number

of sub-levels d2 := 1. We cannot allow too many individuals with too high mutation rates,

thus a “bad” region B is defined which contains all search point above a threshold value θ2.

Additionally, the important assumption in Lemma 5.4.1 is |P ∩B| ≤ ψ0λ for the population

at beginning of the phase. In overall,

A(1,ℓ) := A1 ×
[
Aℓ−1ϵ,min

(
Aℓϵ, θ1(|κ1|)

))
for ℓ ∈ [d1 − 1]; (5.4)

if |κ2| = |κ1|+ 1, we define

A(1,d1) := A1 ×
[
θ1(|κ1|),min

(
1

2
, θ2(|κ1|)

)]
∪

A2 ×
(
min

(
1

2
, θ2(|κ2|)

)
,min

(
1

2
, θ2(|κ1|)

)]
, (5.5)

if |κ2| = |κ1| or |κ2| = |κ1| − 1, we define

A(1,d1) := A1 ×
[
θ1(|κ1|),min

(
1

2
, θ2(|κ1|)

)]
, (5.6)

A(2,1) := A2 ×
[
ϵ,min

(
Aℓϵ, θ2(|κ2|)

])
; (5.7)

B := ∪2i=1Ai ×
(
θ2(|κi|), 1

2

]
. (5.8)

Note that the sub-levels definition depends on the lengths of substrings κ1 and κ2. Figure 5.2

illustrates the three cases of the definition of the level partitions: (a) |κ2| = |κ1| correspond-

178

5.4. The Self-adaptive EA on DSM

ing stages (1) and (3), (b) |κ2| = |κ1| + 1 corresponding stages (2), and (c) |κ2| = |κ1| − 1

corresponding stages (4).

We apply the same threshold values defined in (Case and Lehre, 2020): for j ≥ 1, let

η(j) :=
1

2A

(
1−

(
1 + δ

α0pinc

)1/j
)

(5.9)

θ1(j) := bη(j) (5.10)

θ2(j) := 1− q1/j, where (5.11)

α0 := λ/µ, q :=
1− ζ
α0

, r0 :=
1 + δ

α0(1− pinc)
, and ζ := 1− α0(r0)

1+
√
r0 . (5.12)

Lemma 5.4.1. Let ε, a, β ∈ (0, 1) and k > 0 be some constants satisfying 1/34 ≤ a < β ≤ 1.

Let κ ∈ {0, 1}ℓ1 be some starting target substring where ℓ1 ∈ Θ(na), and m ∈ Θ(nβ). Let κ1

and κ2 be any two neighbouring substrings of the sequence of target substrings (κi)i≥0 in the

DSMκ,m,ε,k. Let T ′
2 be the evaluation budget for κ2 in the DSMκ,m,ε,k. Suppose that the initial

population P0 in the (µ, λ) self-adaptive EA satisfies |P0∩A≥(1,1)| ≥ γ0λ and |P0∩B| ≤ ψ0λ,

where γ0 and ψ0 are constants in (0, 1). Then, there exist constants δ and ξ in (0, 1) such that

the probability of the (µ, λ) self-adaptive EA with parameters λ, µ = Θ(nξ), λ/µ = α0 ≥ 4,

A > 1, 0 < b < 1/(1 +
√

1/α0(1− pinc)), (1 + δ)/α0 < pinc < 2/5, ϵ = b′/n for any constant

b′ > 0, where A and b are constants, obtaining a population Pt with |Pt ∩A≥(2,1)| ≥ γ0λ and

|Pt ∩B| ≤ ψ0λ, where t ≤ T ′
2 , is 1− e−Ω(nξ).

We apply the level-based theorem with tail bounds (Theorem 5.3.1) to prove Lemma 5.4.1.

We use serval lemmas to break down the proof of Lemma 5.4.1. Lemma 5.4.2 implies the

probability of selecting individuals in a self-adaptive population.

Lemma 5.4.2. (Selection probability) If at least γλ individuals of a population Pτ of the

(µ, λ) self-adaptive EA with λ/µ = α0 are in A≥(i,ℓ) and at most ψ0λ individuals in B

satisfying ψ0 + γ ≤ 1/α0 for ψ0, γ ∈ (0, 1], then for all i ∈ {1, 2} and ℓ ∈ [di], a parent

(x, χ/n) selected in the (µ, λ) selection step satisfies, Pr
(
(x, χ/n) ∈ A≥(i,ℓ)

)
≤ γα0.

179

Chapter 5. Self-adaptation on Dynamic Optimisation

Proof. By the definition of levels, for any (x1, χ1) ∈ A(1,j) and (x2, χ2) ∈ A(1,k), we know

that (x1, χ1) ⪯Pτ ,f (x2, χ2) if and only if 1 ≤ j ≤ k < d1. For any (x1, χ1) ∈ A(1,j) and

(x2, χ2) ∈ A(2,1), we know that (x1, χ1) ⪯Pτ ,f (x2, χ2) where j ∈ [d1]. We also pessimistically

assume that (xb, χb) ⪰Pτ ,f (x, χ) where (xb, χb) ∈ B and (x, χ) ∈ Y\B. Thus, the higher

level individual alway has a higher rank after sorting in the (µ, λ) self-adaptive EA, except

individuals in the B region. Since 0 < γλ ≤ µ − ψ0λ, all γλ individuals in A≥(i,ℓ) can be

selected with probability 1/µ in the (µ, λ) selection. Thus the probability of selecting a

parent (x, χ/n) ∈ A≥(i,ℓ) is at least γλ/µ = γα0.

Lemma 5.4.3 corresponds to condition (C0) in Theorem 5.3.1.

Lemma 5.4.3. (Condition (C0)) Assume that the parameters A, b and pinc satisfy the con-

straints in Lemma 5.4.1. Then there exists a constant δ ∈ (0, 1) such that if the (µ, λ) selec-

tion step of the (µ, λ) self-adaptive EA selects a parent (x, χ/n), then the offspring (x′, χ′/n)

created by self-adapting mutation rate and mutating bitstring satisfies, Pr ((x′, χ′/n) ∈ B) ≤
1−ζ
α0

.

Proof. We divide into two cases based on the individual created by mutating bitstring in the

(µ, λ) self-adaptive EA (after selection and mutation rate adaptation):

• If (x, χ′/n) ∈ B, then χ′/n > θ2(|κj|) and M(x,κj) = 1 for j ∈ {1, 2}. The probability

that (x′, χ′/n) still in B, i.e., does not flip any matched bit, is (1− χ′/n)|κj |. By the

definition θ2(|κj|), such probability is at most 1−ζ
α0

.

• If (x, χ′/n) /∈ B, then it is necessary to match any substring or switch the matching

substring, i.e., at least flipping only one matched bit, to obtain (x′, χ′/n) ∈ B. This

probability is at most (1− χ′/n)|κj |−1 χ′

n
< (1− χ′/n)|κj | < 1−ζ

α0
.

180

5.4. The Self-adaptive EA on DSM

Lemma 5.4.4 corresponds to conditions (C2) in Theorem 5.3.1. Lemma 5.4.4 looks similar

to Lemma 4 in (Case and Lehre, 2020), but their proofs are different since the definitions of

the level partitions are different.

Lemma 5.4.4. (Condition (C2)) Assume that the parameters A, b and pinc satisfy the

constraints in Lemma 5.4.1. Then there exists a constant δ ∈ (0, 1/10) such that for all

j ∈ {1, 2} and ℓ ∈ [dj], if the (µ, λ) selection step of the (µ, λ) self-adaptive EA selects a

parent (x, χ/n) ∈ A≥(i,ℓ), then the offspring (x′, χ′/n) created by self-adapting mutation rate

and mutating bitstring satisfies, Pr
(
(x′, χ′/n) ∈ A≥(i,ℓ)

)
≥ 1+δ

α0
.

Proof. If the selected parent (x, χ/n) is in A(2,1), then, by the definition of the levels, we know

χ/n ≤ θ2(|κ2|). To estimate the probability of producing an offspring (x′, χ′/n) ∈ A≥(i,ℓ), it

is sufficient to only consider the case that the mutation rate reduces χ′ = bχ, and no matched

bit is flipped, in which their probabilities are 1− pinc and 1+δ
α0(1−pinc) (by Lemma A.2.12 (8)),

respectively. Thus, Pr
(
(x′, χ′/n) ∈ A≥(i,ℓ)

)
≥ 1+δ

α0
.

If the selected parent (x, χ/n) in A(1,d1), then we know θ1(|κ1|) ≤ χ/n ≤ θ2(|κ1|) by the

levels definition. We distinguish two cases based on the mutation rate:

• θ1(|κ1|) ≤ χ/n ≤ η(|κ1|): Since (x,Aχ) is still in A(1,d1) by Lemma A.2.12 (3), we

only consider the case that the mutation rate increases χ′ = Aχ and no matched

bit is flipped, in which the probabilities are pinc and 1+δ
α0pinc

(by Lemma A.2.12 (7)),

respectively. Then, Pr
(
(x′, χ′/n) ∈ A≥(1,d1)

)
≥ 1+δ

α0
.

• η(|κ1|) ≤ χ/n ≤ θ2(|κ1|): Since (x, bχ) is still in A(1,d1) by Lemma A.2.12 (4), we

only consider the case that the mutation rate reduces χ′ = bχ and no matched bit is

flipped, in which the probabilities are 1 − pinc and 1+δ
α0(1−pinc) (by Lemma A.2.12 (8)),

respectively. Then this probability is at least 1+δ
α0

.

181

Chapter 5. Self-adaptation on Dynamic Optimisation

If the selected parent (x, χ/n) in A(1,ℓ) for ℓ ∈ [d1 − 1], then we know χ/n < θ1(|κ1|) <

η(|κ1|) by the definition of the levels. We only consider the case that the mutation rate

increases χ′ = Aχ and no matched bit is flipped, in which the probabilities are pinc and 1+δ
α0pinc

(by Lemma A.2.12 (7)), respectively. Overall, Pr
(
(x′, χ′/n) ∈ A≥(1,ℓ+1)

)
≥ 1+δ

α0
.

Lemma 5.4.5 corresponds to condition (C1) in Theorem 5.3.1.

Lemma 5.4.5. (Condition (C1)) Assume that the parameters A, b and pinc satisfy the

constraints in Lemma 5.4.1. Then there exists a constant δ ∈ (0, 1/10) such that if the (µ, λ)

selection step of the (µ, λ) self-adaptive EA selects a parent (x, χ/n) ∈ A≥(1,ℓ) for ℓ ∈ [dj−1],

then the offspring (x′, χ′/n) created by self-adapting mutation rate and mutating bitstring

satisfies, Pr
(
(x′, χ′/n) ∈ A≥(1,ℓ+1)

)
≥ 1+δ

α0
, and if the selected parent (x, χ/n) ∈ A(1,d1), then

the offspring (x′, χ′/n) satisfies, Pr
(
(x′, χ′/n) ∈ A≥(2,1)

)
= Ω(1/|κ2|).

Proof. If the parent (x, χ/n) ∈ A(1,ℓ) for ℓ ∈ [dj−1], we only consider to produce an offspring

(x′, χ′/n) ∈ A(1,ℓ+1) by increasing the mutation rate and not flipping any matched bit, such

that Pr
(
(x′, χ′/n) ∈ A≥(1,ℓ+1)

)
≥ pinc (1− Aχ/n)|κ1| ≥ 1+δ

α0
by the definition of levels and

Lemma A.2.12 (7).

If the selected parent (x, χ/n) ∈ A(1,d1), we distinguish three cases:

• |κ1| = |κ2|+ 1: bθ2(|κ1|) < θ2(|κ2|) by Lemma A.2.12 (5).

• |κ1| = |κ2| − 1: θ2(|κ1|) < θ2(|κ2|).

• |κ1| = |κ2|: θ2(|κ1|) = θ2(|κ2|).

Thus, we only consider to produce an offspring (x′, χ′/n) ∈ A(2,1) by reducing the muta-

tion rate, and flipping one mismatched bit and not flipping other matched bits, such that

Pr
(
(x′, χ′/n) ∈ A≥(1,ℓ+1)

)
≥ (1 − pinc) (1− bχ/n)|κ2|−1 bχ

n
= Ω(1/|κ2|), since 1 − bχ/n ≤

182

5.4. The Self-adaptive EA on DSM

1 − θ2(|κ2|) ≤ 1 − θ2(1) ∈ Ω(1) and bχ
n
≤ bθ1(|κ1|) = b2η(|κ1|) ≥ b2θ2(|κ1|)/A ∈ Ω(1/|κ2|)

by Lemma A.2.12 (3) and (1).

Now, we use Lemmas 5.4.3-5.4.5 to prove Lemma 5.4.1.

Proof of Lemma 5.4.1. With the assumptions on P0, we can apply Theorem 5.3.1 to prove

Lemma 5.4.1. We first list some values from the DSMκ,m,ε,k for later use: T ′
2 := knε|κ2|

for some constant k > 0, ||κ1| − |κ2|| ≤ 1, |κ1|, |κ2| ∈ Ω(na) ∩ O(nβ). We also define

some values ψ0 := (1− ζ/2)/α0, γ0 := ζ/2, ξ := δ3ε/34, η := nε/2. We then know

δ, b, pinc, γ0, ψ0, ζ, ε, a, β, ξ ∈ (0, 1) and α0 ≥ 4 are constants. We use the level partition

defined in Eq. (5.4)-(5.8).

Condition (C0) implies not too many individuals in the B region, i.e. at most ψ0λ indi-

viduals, which is verified by Lemma 5.4.3, such that Pr ((x′, χ′) ∈ B) < 1−ζ
α0
≤ (1−δ)1−ζ/2

α0
≤

(1− δ)ψ for some constant δ ≤ ζ
2−ζ .

To verify condition (C2), we must estimate the probability of producing an offspring in

A≥(i,ℓ) for i ∈ {1, 2} and ℓ ∈ [di], assuming at least γλ individuals in A≥(i,ℓ) for any γ ∈ (0, γ0]

and at most ψ0λ individuals in B. To produce such offspring, it is necessary to first select

a parent (x, χ) in A≥(i,ℓ), and to create an offspring (x′, χ′) in A≥(i,ℓ). The probability

of selecting a parent (x, χ) ∈ A≥(i,ℓ) is at least γλ/µ = γα0 by Lemma 5.4.2. Then the

probability to create an offspring (x′, χ′) ∈ A≥(i,ℓ) is at least (1 + δ)/α0 by Lemma 5.4.4.

Thus, condition (C2) is satisfied by γα0(1 + δ)/α0 = γ(1 + δ).

To verify condition (C1), we need to estimate the probability of producing an offspring in

a level higher than A≥(1,ℓ) for ℓ ∈ [di], if at least γ0λ individuals in A≥(1,ℓ). We only consider

the case that the parent (x, χ) is selected from A≥(1,ℓ), in which its probability is γ0α0 from

Lemma 5.4.2. Then by Lemma 5.4.5, the probability of producing an offspring in A(1,ℓ+1) is

(1 + δ)γ0 =: z(1,ℓ) for all ℓ ∈ [d1 − 1], and the probability of producing an offspring in A(2,1)

183

Chapter 5. Self-adaptation on Dynamic Optimisation

is z(1,d1) = Ω(1/|κ2|) for ℓ = 1.

Now, we can compute the lower bound of probability of runtime T ≤ T ′
2 . By Theo-

rem 5.3.1,

T = ηλ17/δ
3

(
1

z(1,d1)
+ ((1 + δ)γ0) (d1 − 1) + d1λ

(
ln(γ0λ)

ln(1 + δ/2)
+ 1

))
since δ, γ0 ∈ (0, 1) are constants and d1 ∈ log(n),

= O
(
ηλ17/δ

3

(|κ2|+ λ log(n) log(log(n)))
)

since λ ∈ Θ(nξ), |κ2| ∈ Ω(na) and ξ = δ3ε/34 < 1/34 ≤ a,

= O
(
ηλ17/δ

3|κ2|
)
= O (nε|κ2|)

if we let η = Θ
(
nε/2

)
. Thus there exists T ∈ O (nε|κ2|) and constant c > 0 satisfying

T ′
2 = cnε|κ2| ≥ ηT , Such that,

Pr (T ≤ T ′
2) ≥ Pr (T ≤ ηT)

>
(
1− 2ητe−δ

2 min{ψ0,γ0}λ/8
)(

1−me−ηρ
− ln(γ0)

ln(1+δ/2)
−2

)

since δ, ψ0, γ0 ∈ (0, 1) are constants, and η = Θ(nε/2), λ ∈ Θ(nξ),

=
(
1− e−Ω(λ)

) (
1− e−Ω(η)

)
=1− e−Ω(nξ).

Theorem 5.4.1 then presents the efficiency of the (µ, λ) self-adaptive EA in addressing the

DSM problem. Apart from population size, other parameters such as A, b, and pinc align

with the previous study about unknown-structure optimisation in (Case and Lehre, 2020).

This suggests that these parameters may not necessarily require tuning for specific problems.

184

5.5. Static Mutation-based EAs Get Lost on DSM

Utilising a larger population size may be necessary for tracking dynamic optima. In previous

studies (Dang et al., 2015, 2017), a similarly large population size of Θ(nξ) was employed to

track optima.

Theorem 5.4.1. Let ε, a, β ∈ (0, 1) and k > 0 be some constants satisfying 1/34 ≤ a < β ≤

1. Let ϵ := b′/n for any constant b′ > 0. Consider a starting target substring κ ∈ {0, 1}ℓ1

with ℓ1 ∈ Θ(na) and m ∈ Θ(nβ). Assume that all individuals in the initial population

P0 in the (µ, λ) self-adaptive EA match κ and have a mutation rate of ϵ. Then, there

exists a constant ξ ∈ (0, 1) such that the probability of the (µ, λ) self-adaptive EA with

parameters λ, µ = Θ(nξ), λ/µ = α0 ≥ 4, A > 1, 0 < b < 1/(1 +
√

1/α0(1− pinc)),

(1+δ)/α0 < pinc < 2/5, and ϵ, where A and b are constants, tracking DSMκ,m,ε,k is 1−e−Ω(nξ).

Proof of Theorem 5.4.1. By the level definition in Eq. (5.4)-(5.8), we know that the initial

population P0 satisfies the assumption of Lemma 5.4.1. Then by Lemma 5.4.1, the probability

of the algorithms successfully tracking in all phases is
(
1− e−Ω(nξ)

)4m
= 1− e−Ω(nξ).

5.5 Static Mutation-based EAs Get Lost on DSM

This section shows that static mutation-based EAs (both Algorithms 2 and 3) get lost in

tracking the DSM problem. We first derive Lemma 5.5.1, which provides the upper bound

of the probability of the static mutation-based EAs moving from one optimum to the next

optimum in the evaluation budget of the DSM problem. This upper bound is with respect

to the length of the current target substring and the mutation rate of the static mutation-

based EAs. From Lemma 5.5.1, too high or too low mutation rates lead the algorithms to

achieve the current optimum in the given evaluation budget with an insufficient probability,

i.e., at most, a constant probability. More precisely, too high mutation rates are χ/n where

χ ∈ Ω(n1+ε/ℓ) and too low mutation rates are χ ∈ O(n1−ε/ℓ). Then Theorem 5.5.1 is proved

185

Chapter 5. Self-adaptation on Dynamic Optimisation

via Lemma 5.5.1, which shows that there is no existing mutation rate that tracks the DSM

problems with a high probability.

Lemma 5.5.1. Let κ1 and κ2 be two substrings where κ1,κ2 ∈ {0, 1}ℓ and H(κ1,κ2) = 1

for ℓ ∈ [n]. Let ε ∈ (0, 1), γ0 ∈ (0, 1] and k > 0 be arbitrary constants. Assume that all indi-

viduals of the initial population P0 of static mutation-based EAs are matching κ1. Then the

probability that static mutation-based EAs using mutation rate χ/n where χ ∈ (0, n/2] find a

solution matching κ2 in knεℓ evaluations is p < 1−exp
(
−χe−χ ℓ−1

n
knεℓ
n

)(
1− χ2e−2χ ℓ−1

n

n

) knεℓ
n

.

Proof. By the assumption H(κ1,κ2) = 1, in any generation τ , if there is no individual in

Pτ matching κ2, then any individual in Pτ has at least one mismatched bit to κ2. We

optimistically assume that the selection operators (Line 3 of Algorithm 2 and Line 3 of

Algorithm 3) always return the closest neighbour of the set of solutions matching κ2, i.e.,

with one mismatched bit and ℓ − 1 matched bits. To obtain a solution matching κ2, the

mutation operator must flip the mismatched bit of x, and do not flip any mismatched bit in

which the probability is (1 − χ/n)ℓ−1(χ/n). Then, such an event happens at least once in

knεℓ evaluations with p =

1−
(
1−

(
1− χ

n

)ℓ−1 χ

n

)knεℓ
= 1−

(
1−

(
1− χ

n

)n· ℓ−1
n χ

n

)n· knεℓ
n

≤ 1−
(
1− e−χ

ℓ−1
n
χ

n

)n· knεℓ
n

by (1 + x/n)n ≤ ex and Lemma A.2.5

≤ 1− exp

(
−χe−χ

ℓ−1
n
knεℓ

n

)(
1− χ2e−2χ ℓ−1

n

n

) knεℓ
n

.

Theorem 5.5.1. Let ε, a, β ∈ (0, 1) and k > 0 be some constants satisfying 1/2 + ε <

a+2ε < β ≤ 1− ε. Let κ ∈ {0, 1}ℓ1 be some starting target substring where ℓ1 ∈ Θ(na), and

186

5.5. Static Mutation-based EAs Get Lost on DSM

m ∈ Θ(nβ). Then the static mutation-based EAs using any mutation rate χ/n ∈ (0, 1/2] and

population size λ ∈ N tracks DSMκ,m,ε,k with probability e−Ω(nβ).

Proof. We prove Theorem 5.5.1 via Lemma 5.5.1. We consider two cases in tracking dynamic

optima of the DSM problem to show that the static mutation-based EAs are not able to

achieve the final optimum with high probability.

Let ℓ2 := ℓ1 + m, then ℓ2 ∈ Θ(nβ). Based on the mutation rate, we can categorise the

scenarios into two situations:

(1) Assume that all solutions in the current population of the static mutation-based EAs

using a mutation rate χ/n satisfying n/2 ≥ χ ∈ Ω(n1−β+ε) match κi−1 where i ∈ [2m+1..3m].

Then by Lemma 5.5.1, the probability of matching κi in Ti = knεℓ1 evaluations is at most

p < 1− exp

(
−χe−χ

ℓ2−1
n
knεℓ2
n

)(
1− χ2e−2χ

ℓ2−1
n

n

) knεℓ2
n

by the assumptions, we know that there exists some constants c′, c′′ > 0, such that c′n1−β+ε ≤

χ ≤ n/2 and ℓ2 = c′′nβ, then χe−χ
ℓ2−1
n

knεℓ2
n
≤ n

2
exp

(
−c′n1−β+ε c′′nβ−1

n

)
kc′′nεnβ

n
= O

(
nβ+ε

enε

)
∈ o(1), and χ2e−2χ

ℓ2−1
n

n
≤

(n/2)2 exp

(
−c′n1−β+ε c′′nβ−1

n

)
n

= O
(
n
enε

)
∈ o(1), then

= 1− e−o(1) (1− o(1))
kc′′nεnβ

n

since knεℓ2
n

= kc′′nβ+ε−1 ≤ 1 by β ≤ 1− ε,

= 1− e−o(1) (1− o(1)) = o(1) < ξ

where ξ ∈ (0, 1) is some constant.

(2) Now we assume that all solutions in the current population of the static mutation-

based EA using a mutation rate χ/n satisfying χ ∈ O(n1−a−ε), are matching κi−1 where

187

Chapter 5. Self-adaptation on Dynamic Optimisation

i ∈ [m]. Then, by Lemma 5.5.1, the probability of matching κi in Ti = knεℓ2 evaluations are

p < 1− exp

(
−χe−χ

ℓ1−1
n
knεℓ1
n

)(
1− χ2e−2χ

ℓ1−1
n

n

) knεℓ1
n

by the assumptions, we know that there exist some constants d′, d′′ > 0, such that d′n1−a−ε ≥

χ > 0 and ℓ1 = d′′na, then χe−χ
ℓ1−1
n

knεℓ1
n
≤ d′n1−a−εe0 kd

′′na+ε

n
= kd′d′′, and χ2e−2χ

ℓ1−1
n

n
<

(d′′)2n2(1−a−ε)e0

n
= n1−2a−2ε = o(1) by a+ ε > 1/2, then

< 1− e−kd′d′′(1− o(1))
kd′′nεna

n < ξ

the last equation holds for some constant ξ ∈ (0, 1) since 1− ε ≥ β.

By the assumption 1−a−ε > 1−β+ε, we know that O(n1−a−ε)∩Ω(1−β+ε) = (0, n/2], so

that all mutation rates in (0, 1/2] lead the static mutation-based EAs to track the optimum

κi in the evaluation budget Ti with probability at most ξ for either i ∈ [m] or i ∈ [2m+1..3m].

Thus, the total probability of tracking every target of DSMκ,m,ε,k is at most ξm ∈ e−Ω(nβ).

5.6 Conclusion

This chapter demonstrates the benefits of self-adaptation in dynamic optimisation. Our

analyses show that static mutation-based EAs have a negligible chance of tracking these

dynamic optima with changing structure, while the self-adaptive EA can track them. We

also provided a level-based theorem with tail bounds to evaluate the performance of the

self-adaptive EA on the DSM problem.

188

5.6. Conclusion

189

190

Chapter Six

Self-adaptation in

Multi-modal Landscapes

Authors: Per Kristian Lehre and Xiaoyu Qin

This chapter is based on the following publication:

Self-adaptation via Multi-objectivisation: A Theoretical Study (Lehre and Qin, 2022b)

which is published in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO’22).

191

Chapter 6. Self-adaptation in Multi-modal Landscapes

6.1 Introduction

EAs can be good solvers for multi-modal optimisation problems if they balance exploring

new but potential less fit regions of the fitness landscape while also focusing on the regions

near the fittest individuals (Črepinšek et al., 2013). In the past decade, several studies in

the area of runtime analysis investigated how EAs can cope with local optima. In addition

to mechanisms like crossover (Antipov et al., 2022; Dang et al., 2018), stagnation detection

(Bambury et al., 2021; Rajabi and Witt, 2021) and adapting population size (Hevia Fajardo

and Sudholt, 2021a), a large mutation rate was shown to help some mutation-EA only escap-

ing certain local optima. Non-elitist EAs can “jump” a large Hamming distance. But they

can potentially also maintain less fit individuals in the population, allowing the population

to cross a fitness valley. They might keep some currently low but potentially high fitness

individuals in the population and optimise them “smoothly”. As mentioned in Section 2.3.4,

a tunable problem class SparseLocalOpt was proposed to describe a kind of fitness land-

scapes with sparse deceptive regions (local optima) and dense fitness valleys (Dang et al.,

2021b). Informally, every search point in a dense set has many neighbours in that set, and

every search point in a sparse set has few members in any direction. Dang et al. (2021b)

show that EAs with a non-linear selection and a sufficiently high mutation rate, i.e., close

to the error threshold, can cope with sparse local optima. Non-linear selection is a type of

non-elitist selection, in which the probability of each individual to be selected non-linear with

respect to its rank in the population, e.g., tournament and linear ranking selections (Lehre

and Yao, 2012). Typically, the fitter individual has a higher probability to be selected, but

the worse individual still has some chance to be chosen. From their analysis, non-linear selec-

tions and sufficiently high mutation rates can limit the percentage of “sparse” local optimal

individuals in the population by choosing a sufficiently high mutation rate. The reason is

that the sparse local optimal individuals can have a higher chance to be selected but can only

survive a small percentage of such individuals after mutation, while the dense fitness valley

192

6.1. Introduction

individuals may have less chance of being selected but can have higher chance of surviving

mutation. However, the performance of the EA depends critically on choosing the “right”

mutation rate, which should be sufficiently high but below the error threshold. Moreover,

finding such a mutation rate might be difficult or infeasible for some problem instances with

not too sparse local optima.

Mutation rate

Fitness

Dense fitness valley

Sparse local optima

with high fitness

Sparse local optima

with low fitness

Search Space

Error threshold 1

Error threshold 2Fi
tn

es
s V

al
ue

Figure 6.1: Intuition of MOSA-EA

The self-adaptive parameter control mechanism is a promising method to configure pa-

rameters. Case and Lehre (2020) also showed that self-adaptation can find the (nearly)

maximal “right” mutation rate for each search point on some benchmark functions. We say

the “right” mutation rate for a search point is below a threshold, where the expected number

of non-worse offsprings of an individual with a mutation rate below this threshold is greater

than 1. For SparseLocalOpt, the maximal “right” mutation rate for dense fitness valleys

can be higher, while the maximal “right” mutation rate for sparse local optima may be lower.

In self-adaptation, individuals can be configured to different mutation rates. If we maximise

the mutation rates for both sparse local optima and dense fitness valleys, then the sparse

local optimal individual and the dense fitness valley individual could potentially co-exist in

a non-dominated Pareto front (Figure 6.1). Therefore, we can treat parameter control from

the perspective of multi-objective optimisation to find the optimal solution and the maximal

“right” mutation rates for each search point simultaneously.

193

Chapter 6. Self-adaptation in Multi-modal Landscapes

In this chapter, we propose the multi-objective self-adaptive EA (MOSA-EA) for single-

objective optimisation, which treats parameter control from the perspective of multi-objective

optimisation: The algorithm simultaneously maximises the fitness and the mutation rates.

To present advantages of the MOSA-EA, we first propose the PeakedLOm,k function, which

is a version of PeakedLO (Dang and Lehre, 2016b) with tunable sparsity, where the fitness

value is m if a local optimal individual x = 0k∗n−k and is LeadingOnes value otherwise,

where ∗ represents an arbitrary bit. The sparsity of the local optima can be tuned by the

sparse parameter k ∈ [n]. With the PeakedLOm,k function, we simulate a situation in that

algorithms have already been trapped into unknown sparse local optima and estimate the

expected time to reach the global optimum. The runtime analyses show that the MOSA-

EA can cope with local optima for any k ∈ Ω(n), while the elitist EA, the (µ, λ) EA, and

the tournament EA fails for some k ∈ Ω(n). Table 6.1 demonstrates the theoretical results

obtained in this study. The used parameters for the algorithms can be found in the cor-

responding theorems. Additionally, a comprehensive experimental study on MOSA-EA is

presented in Chapter 7.

The chapter is structured as follows. Section 6.2 provides the definition of PeakedLOm,k.

Section 6.3 introduces the MOSA-EA. Section 6.4 shows that the elitist EA, the (µ, λ) EA

and the tournament EA with a fixed mutation rate is inefficient to cope with local optima in

PeakedLOm,k for some k ∈ Ω(n). In Section 6.5, we analyse the runtime of the MOSA-EA

on PeakedLOm,k. Section 6.6 summarises the chapter.

Table 6.1: Theoretical results of EAs on PeakedLOm,k (for some constant c, δ > 0)

Algorithm PeakedLOm,k Runtime T Theorem

(µ+ λ) EA Any k ≤ n and k,m ∈ Ω(n) Pr (T ≤ ecn) ≤ e−Ω(n) Theorem 6.4.1

(µ, λ) EA Any k ≤ n and k,m ∈ Ω(n) Pr (T ≤ ecn) ≤ e−Ω(n) Theorem 6.4.2

2-tour. EA Any k < (ln(3/2)− δ)n and k,m ∈ Ω(n) Pr (T ≤ ecn) ≤ e−Ω(λ) Theorem 6.4.3

(µ, λ) MOSA-EA Any n ≥ k ∈ Ω(n), ⌈m⌉ < 2A (1 + ln(pinc)/ln(α0)− o(1)) k † E[T] = O (n2 log(n)) Theorem 6.5.1

194

6.2. PeakedLOm,k Problems

6.2 PeakedLOm,k Problems

Dang and Lehre (Dang and Lehre, 2016b) proposed a bi-modal function PeakedLOm where

the fitness value is m if a peak individual x = 0n and LO(x) otherwise (defined in Eq. (2.21)).

The “density” of the fitness valley can be tuned by m. In this section, we introduce a more

general version of PeakedLO, where the “sparsity” of the peak individual can be tuned by

a parameter k. Let ∗ represent an arbitrary bit. Then the problem class is defined as

PeakedLOm,k(x) :=

 m if x = 0k∗n−k,

LO(x) otherwise

for any k ∈ [n] and any 1 < m ∈ R. The PeakedLOm function (Dang and Lehre, 2016b)

is a special case of PeakedLOm,k where k = n. Similarly to (Dang and Lehre, 2016b), we

assume that the algorithm is initiated from the search points 0k∗n−k. It is unlikely that the

algorithm will end up on this particular local optima if the population is initialised uniformly

at random. However, here, we are interested in the capability of an algorithm to escape a

local optimum, wherever it is encountered. Our assumption is therefore reasonable for the

purposes of the analysis.

6.3 Multi-objective Self-adaptive EA

This section will introduce the multi-objective self-adaptive evolutionary algorithm (MOSA-

EA). The basic idea of the MOSA-EA is to treat the parameter optimisation task as another

objective, i.e., maximising fitness mutation rate simultaneously. Compared to existing self-

adaptive EAs, the MOSA-EA is characterised by the population sorting method. Previous

self-adaptive EAs (Case and Lehre, 2020; Dang and Lehre, 2016b; B. Doerr et al., 2021)

sort the population by considering the fitness of individuals first, then the mutation rate.
†For some constants pinc < 2/5, α ≥ 4, A > 1 based on restrictions in Theorem 6.5.1.

195

Chapter 6. Self-adaptation in Multi-modal Landscapes

In contrast, the MOSA-EA sorts the population based on the multi-objective sorting partial

order (Definition 6.3.1) where we have adapted from two famous multi-objective EAs (Deb

et al., 2002; Srinivas and Deb, 1994).

6.3.1 Multi-objective Sorting Partial Order

(a) Fitness-first sorting (SA-EA)

6

2
3
4
5

7

8

9!!"#"

!!$#"

!!$%"

!!"

!!"%"

!
"

…
…

1

…

…

!… $$ − 1$ − 2 $ − 1 $ + 2 …0

10
11

12

…

(b) Multi-objective sorting (MOSA-EA)

6

2

3

4

5
7

8

9

!!"#"

!!$#"

!!$%"

!!"

!!"%"

!
"

…
…

1

10

…

…

!… $$ − 1$ − 2 $ − 1 $ + 2 …0

ℱ!

ℱ"
ℱ#
ℱ$

ℱ%
ℱ&

Figure 6.2: Illustration of population sorting in (a) fitness first sorting partial order (Defi-

nition 2.2.4 (b)) and (b) multi-objective sorting partial order. The points in the same cell

have the same fitness and the same mutation rate.

The MOSA-EA aims to maximise fitness and mutation rates simultaneously. To achieve

this goal, we sort the population based on multi-objective sorting partial order before pro-

ducing the next population, as shown in Definition 6.3.1. Specifically, the multi-objective

sorting partial order based on the strict non-dominated fronts of the population produced

by the strict non-dominated sorting algorithm (Algorithm 15) based on maximising two ob-

jective functions, i.e., the fitness value of the solution f1(x, χ/n) := f(x) and the mutation

rate of the individual f2(x, χ/n) := χ/n. In each strict non-dominated Pareto front, Al-

gorithm 15 guarantees that there do not exist two individuals with the same fitness value

and mutation rate. Note that we assume that the aim is to maximise all objectives in Al-

gorithm 15, and we say an individual a dominates another individual b, written as a ≺ b

196

6.3. Multi-objective Self-adaptive EA

if (1) the objective values of a are no lower than b for all functions, and (2) at least one

objective value of a is strictly higher than that objective value in b. The main difference

between the fast non-dominated sorting algorithm used in NSGA-II (Deb et al., 2002) and

the strict non-dominated sorting algorithm shown in Algorithm 15 is that the latter can

avoid too many similar or copies of the same individual, i.e., same objective values in all

functions, in one front, by Lines 9-11. This characteristic can avoid the situation that some

individuals dominate the population, i.e., occupying the top positions of the sorted popula-

tion. In other words, the strict non-dominated sorting algorithm can increase the diversity

of the population.

Subsequently, Definition 6.3.1 outlines the multi-objective sorting partial order, which pre-

fer a smaller index of the front, then a higher fitness value, since the priority of optimisation

is to find better solutions.

Definition 6.3.1 (Multi-objective sorting partial order). Consider a self-adaptive population

P ∈ Yλ and strict non-dominated fronts of P : F0,F1, . . . based on f1(x, χ/n) := f(x) and

f2(x, χ) := χ/n, where Y = {0, 1}n × (0, 1/2] and n ∈ N. Let f : {0, 1}n → R be a Pseudo-

Boolean function. Given any two individuals P (i) and P (j) where i ̸= j and i, j ∈ [λ], the

multi-objective sorting partial order is defined as: for all (x, χ/n), (x′, χ′/n) ∈ Y,

P (i) ⪰P,f P (j)⇐⇒ g(i) < g(j) ∨ (g(i) = g(j) ∧ f1(P (i)) > f1(P (j))) , (6.1)

where g(k) indicates the index of the strict non-dominated front of k-th individual in P .

Then we can get a sorted population based on this sorting partial order, in which any

individual a is ranked before an individual b if a has a higher fitness value or a higher

mutation rate than b. Figure 6.2 illustrates an example of the order of a population after

multi-objective sorting. Note that the points in the same cell have the same fitness value

and the same mutation rate. Algorithm 16 shows an alternative way to do multi-objective

sorting step in MOSA-EA (step 2 in Algorithm 7).

197

Chapter 6. Self-adaptation in Multi-modal Landscapes

Algorithm 15 Strict non-dominated sorting

Require: Population sizes λ ∈ N. Population P ∈ Zλ, where Z is a finite state space.

Objective functions f1, f2, . . . : Z → R (assume to maximise all objective functions).

1: for each individual P (i) do

2: Set Si := ∅ and ni := 0

3: for i = 1, . . . , λ do

4: for j = 1, . . . , λ do

5: if P (i) ≺ P (j) based on f1, f2, . . . then

6: Si := Si ∪ {P (i)},

7: else if P (j) ≺ P (i) based on f1, f2, . . . then

8: ni := ni + 1,

9: else if fℓ(P (i)) = fℓ(P (j)) where ℓ = 1, 2, . . . then

10: if P (i) /∈ Sj then Si := Si ∪ {P (i)} else ni := ni + 1.

11: if ni = 0 then F0 = F0 ∪ {P (i)}.

12: Set k := 0.

13: while Fk ̸= ∅ do

14: Q := ∅.

15: for each individual P (i) ∈ Fk and P (j) ∈ Si do

16: Set nj := nj − 1.

17: if nj = 0 then Q := Q ∪ {P (j)}.

18: Set k := k + 1, Fk := Q.

19: return F0,F1,

6.3.2 Self-adapting Mutation Rate

Self-adapting mutation rate is the key step of self-adaptive EAs. Case and Lehre (2020)

and B. Doerr et al.(B. Doerr et al., 2021) use a strategy to increase the mutation rate by

198

6.3. Multi-objective Self-adaptive EA

Algorithm 16 Alternative multi-objective sorting step in MOSA-EA
Require: Population sizes λ ∈ N.

Require: Population P ∈ Yλ.

Require: Fitness function f .

1: Sort Pt into P 1, P 2, . . . where P 1 containing all individuals with the highest fitness f , P 2

containing all individuals with the 2-nd highest fitness f ,

2: for i = 1, . . . , λ do

3: Set χ̂ := −∞.

4: for Q = P 1, P 1, . . . do

5: Find (x′, χ′) which is the element with the highest χ in Q.

6: if Q ̸= ∅ and χ′ > χ̂ then

7: P (i) := (x′, χ′) and χ̂ := χ′.

8: Pop (x′, χ′) from Q.

9: Break.

10: return P .

a multiplicative factor A > 1 with some probability pinc, decrease otherwise. We apply

a similar strategy in Algorithm 17 on the MOSA-EA in experiments (Chapter 7), where

adapting mutation rate from ε to nearly 1/2. To make theoretical analysis easier, we adopt

Algorithm 18 on the MOSA-EA in Theorem 6.5.1. The difference is that Algorithm 18 has

an additional tiny probability pinc2 to increase the mutation rate to the highest of possible

mutation rates.

Finally, we say the MOSA-EA is Algorithm 7 using the multi-objective sorting partial

order (Definition 6.3.1). In this thesis, we only consider the (µ, λ) MOSA-EA with comma

selection (Algorithm 9). For self-adapting mutation rate strategy, we apply Algorithms 17

and 18 in Chapter 7 and Section 6.5, respectively.

199

Chapter 6. Self-adaptation in Multi-modal Landscapes

Algorithm 17 Self-adapting mutation rate strategy
Require: Parameters A > 1, ε > 0 and pinc ∈ (0, 1).

Require: Mutation parameter χ/n.

1: χ′ =


min(Aχ, εnA⌊logA(

1
2ε

)⌋) with probability pinc,

max (χ/A, εn) otherwise.
2: return χ′/n.

Algorithm 18 Self-adapting mutation rate strategy (theoretical)
Require: Parameters A > 1, ε > 0, pinc2 > 0, pinc > 0 and pinc + pinc2 < 1.

Require: Mutation rate χ/n.

1: χ′ =


min(Aχ, εnA⌊logA(

1
2ε

)⌋) with probability pinc,

εnA⌊logA(
1
2ε

)⌋ with probability pinc2,

max (χ/A, εn) otherwise.
2: return χ′/n.

6.4 Inefficiency of Fixed Mutation Rate

The (µ+ λ) EA and the (µ, λ) EA are proved inefficient when optimising the BBFunnel

function which belongs to the SparseLocalOpt problem class (Dang et al., 2021a,b).

We use similar proof ideas to prove the inefficiency on PeakedLOm,k for the (µ+ λ) EA

and (µ, λ) EA, which is shown in Theorems 6.4.1 and 6.4.2, respectively. Furthermore,

the tournament EA can solve SparseLocalOpt problems with very “sparse” local optima

(Dang et al., 2021a,b). In Theorem 6.4.3, we show the 2-tournament EA with any fixed

mutation rate cannot handle a too sparse local optimum on PeakedLOm,k.

Theorem 6.4.1. The expected runtime of the (µ+ λ) EA with λ, µ ∈ poly(n), λ/µ ≥ 1,

initial population P0 = {0k∗n−k}µ, and mutation parameter χ ∈ O(1) on PeakedLOm,k

with any k ≤ n and k,m ∈ Ω(n) satisfies Pr(T ≤ ecn
d
) ≤ e−Ω(n) for some constants c, d > 0.

200

6.4. Inefficiency of Fixed Mutation Rate

Proof. For the (µ+ λ) EA (Algorithm 2), from initial population P0 =
{
0k∗n−k

}µ, if there

is no individual with fitness greater than m, then the initial population will be always the

µ best individuals. We now prove that with probability 1 − e−Ω(n) during the first ecnd

function evaluations, none of search point 1min{n,⌈m⌉}∗n−min{n,⌈m⌉} is created. To created a

search point 1min{n,⌈m⌉}∗n−min{n,⌈m⌉} , it is necessary to mutate from one of individuals in

the initial population P0 = {0k∗n−k}µ, where at least min{k,min{n, ⌈m⌉}} 0-bits must be

flipped. The probability of such an event is n−Ω(n) for the mutation rate χ
n
= O

(
1
n

)
. Thus by

a union bound, the probability of no search point 1min{n,⌈m⌉}∗n−min{n,⌈m⌉} is created within

ecn
d fitness evaluations is 1− ecndn−Ω(n) = 1− e−Ω(n).

Theorem 6.4.2. For any constant δ > 0, the (µ, λ) EA with λ, µ ∈ poly(n), λ/µ = α0

where α0 > 1 is a constant, mutation parameter 0 < χ /∈ [ln(λ/µ)− δ, ln(λ/µ) + δ], and

initial population P0 = {0k∗n−k}λ has runtime Pr (T ≤ ecn) ≤ e−Ω(n) on PeakedLOm,k with

any k ≤ n and k,m ∈ Ω(n) for some constant c > 0.

Proof. The result for χ ≥ ln (λ/µ)+ δ follows directly from Theorem 2.2.1 by that P0 is still

at distance Ω(n) away from 1n.

When χ ≤ ln (λ/µ)− δ, it suffices to prove by induction that with high probability, the µ

best individuals are still 0k∗n−k during the first ecλ generations for some constant c sufficiently

small. Since the µ best individuals of P0 are 0k∗n−k, it is certain that the selected parents

to produce offspring in the next generation are 0k∗n−k. Then, to create an offspring which

is 0k∗n−k, it is suffices to not modify any bit from the parent, the corresponding probability

is
(
1− χ

n

)k ≥ (1− χ
n

)n ≥ (1 − σ)e−χ ≥ µ(1−σ)eδ
λ

for any constant σ > 0 by Lemma A.2.5.

Choosing σ so that 1+σ
1−σ = eδ then this probability is at least µ

λ
(1 + δ). By a Chernoff

bound, the probability that the population has less than µ individuals are 0k∗n−k in the next

generation is e−Ω(λ) = e−Ω(n). In order for those individuals to be the best of the population,

no individual 1min{n,⌈m⌉}∗n−min{n,⌈m⌉} must be created, but the probability of such creation

201

Chapter 6. Self-adaptation in Multi-modal Landscapes

by mutation 0k∗n−k is n−min(k,⌈m⌉) = n−Ω(n) and still n−Ω(n) for the λ sampling. By induction

and an union bound, with probability 1−e−Ω(n), the µ best individuals are those from 0k∗n−k

during the next ecn generations for some sufficiently small constant c.

Theorem 6.4.3. For some constant ξ ∈ (0, 2/3), any k ≤ an where a = ln(3(1 − ξ)/2)

is a constant and m ∈ Ω(n), the runtime of the 2-tournament EA with population size

λ ∈ poly(n) on PeakedLOm,k with the initial population P0 = {0k∗n−k}λ and any fixed

mutation rate satisfies Pr (T ≤ ecn) = e−Ω(λ) for a constant c > 0.

Proof. By the negative drift theorem for populations (Theorem 2.2.1), we know that for any

mutation rate χ ≥ ln(2) + δ where δ ∈ (0, 1) is some constant, the probability that the

algorithm optimises PeakedLOm,k within ecn generations is e−Ω(n) for some constant c > 0.

We then prove that for any k ≤ an, the runtime of the 2-tournament EA on PeakedLOm,k

problems any mutation rate χ ≤ ln(2) + δ − ε satisfied Pr (T ≤ ecn) = e−Ω(λ) for a constant

c > 0.

We will prove a stronger statement that with probability 1− e−Ω(λ), all individuals during

the first ecn generations have less than min{n, ⌈m⌉} leading 1-bits, where c > 0 is a constant.

Choose the parameter δ′ ∈ (0, 1) such that ln
(
1+δ′

1−δ′
)
/a = ε ∈ (0, 1). We call an individual

is a peak individual if it is 0k∗n−k. We first show by induction that with probability 1−e−Ω(λ),

there are at least λ
2

(
1 + δ′

2

)
peak individuals in each of the first ecλ generations, and we call

the run of the algorithm failure otherwise. Then, by Lemma A.2.5, the probability of not

mutating any of the first k bits is(
1− χ

n

)k
≥ e−aχ(1− δ′)

≥
(
1

2

)a(
1

eδ

)a
eaε(1− δ′) ≥

(
1

2

)a
1

eδ
(1 + δ′)

202

6.4. Inefficiency of Fixed Mutation Rate

let ξ := 1− 1/eδ, then for all δ ∈ (0, 1) we have ξ ∈ (0, 2/3), such that

=

(
1

2

)a
(1− ξ) (1 + δ′) >

(
1

e

)a
(1− ξ) (1 + δ′)

≥ 2

3
(1 + δ′) .

Assume that there are γλ ≥ λ
2

peak individuals in the current population. A peak indi-

vidual is produced if a peak individual is selected and none of its first k 0-bits flipped. The

probability of this event is

(
γ2 + 2(1− γ)γ

) (
1− χ

n

)k
≥ γ(2− γ)

(
1− χ

n

)an
≥ 3

4

(
1− χ

n

)an
≥ 1

2
(1 + δ′) .

Hence, by a Chernoff bound, the probability that the next generation contains less than

λ
2

(
1 + δ′

2

)
peak individuals is e−Ω(λ). By induction and an union bound, the probability that

the next ecλ generations contain less λ
2

(
1 + δ′

2

)
peak individuals is still e−Ω(λ), if c > 0 is a

sufficiently small constant.

We now assume that the run is not a failure. Furthermore, we assume that the algorithm

is optimising the function g(x) := min (⌈m⌉,PeakedLOm,k (x)) instead of PeakedLOm,k.

Clearly, the time to reach at least ⌈m⌉ leading 1-bits is the same, whether the algorithm

optimises g or PeakedLOm,k. Assume that there are more than λ
2

(
1 + δ′

2

)
peak individuals,

the reproductive rate of any non-peak individual is always less than

λ

((
1

λ

)2

+
2

λ

(
1− 1

λ
− 1 + δ′/2

2

))
< 1− δ′

2
=: α0

For non-peak individuals, the last n − min(n, ⌈m⌉) bit-positions are irrelevant when the

algorithm optimises g. We can therefore apply the negative drift theorem for populations

(Theorem 2.2.1) with respect to the algorithm limited to the first min(n, ⌈m⌉) bit-positions

only. The mutation operator flips each of the min(n, ⌈m⌉) bits independently with probability

203

Chapter 6. Self-adaptation in Multi-modal Landscapes

χ′

min(n,⌈m⌉) , where χ′ = χm
n

. Hence, we have e−χ′
< 1 = 1−δ′/2

α0
, and the conditions of the

theorem are satisfied.

6.5 Efficiency of MOSA-EA

We now analyse the runtime of the MOSA-EA on PeakedLOm,k (Theorem 6.5.1). In a

previous study, Case and Lehre (2020) derived an upper bound on the runtime of the (µ, λ)

self-adaptive EA on an unknown structure version of LeadingOnes function via the level-

based theorem. They first divide the search space Y into a two-dimensional level partition

including fitness levels and mutation rate sub-levels. Then they define two threshold values

θ1(j) and θ2(j) which is an ideal range of mutation rate to improve the solution for each

fitness level. Informally, they count the number of generations to increase the mutation

rate to enter this ideal mutation rate range, and the number of generations to improve the

solution to the next fitness level if with an ideal mutation rate.

Theorem 6.5.1. For some constant δ ∈ (0, 1), the MOSA-EA with λ
µ

= α0 ≥ 4 and

c log2(n) ≤ λ ∈ poly(n) where α0 is a constant and c is a large enough constant, has

expected runtime O (nλ log(n) log (log(n)) + n2 log(n)) on PeakedLOm,k started with any

initial population, if satisfying

- pinc ∈
(

1+δ
α0
, 2
5

)
, A > (1 +

√
1/(α0(1− pinc))) are constants,

- ε = b
n
, pinc2 = d

n
for any small constants b, d > 0,

- ⌈m⌉ <
(
ln
(
α0pinc
1+δ

))
/
(
2A ln

(
α0

1−δ

))
k − ln

(
α0pinc
1+δ

)
+ 1, where k = an for any constant

a ∈ (0, 1].

204

6.5. Efficiency of MOSA-EA

Although the MOSA-EA analysed in Theorem 6.5.1 is significantly different from the (µ, λ)

self-adaptive EA, e.g., different sorting mechanisms and different self-adapting mutation rate

strategies, we can use a similar proof idea for these two varieties of LeadingOnes. We first

divide the search space Y into regions based on k and m of PeakedLOm,k. Then we

partition each region into fitness levels and mutation rate sub-levels. We formally define

these in Section 6.5.1. Section 6.5.2 defines some threshold values and functions, similaly to

(Case and Lehre, 2020), and we also introduce some useful lemmas. Finally, in Section 6.5.3,

we apply the level-based theorem (Theorem 2.2.1) to the level partition to get an upper

bound of runtime on PeakedLOm,k.

6.5.1 Partitioning the Search Space into Levels

We partition the two-dimensional search space Y = X × [ε, 1/2] into “levels”. We first divide

the search space Y into three parts A′, A and Bk based on fitness value and mutation rate,

which are coloured by yellow, blue and grey in Figure 6.3, respectively. Note that Figure 6.3

is an informal illustration since the formal definitions are complicated. Formally, we define

the regions with the PeakedLOm,k parameters k,m and a threshold value θ′2 as

• A′
j := {(x, χ) | LO(x) = j and x ̸= 0k ∗n−k and χ < θ′2} for j ∈ [0..⌈m⌉ − 1];

• A′
⌈m⌉ := {(x, χ) | x = 0k ∗n−k and χ < θ′2};

• Aj := {(x, χ) ∈ X | LO(x) = j and x ̸= 0k ∗n−k and χ ≥ θ′2} for j ∈ [0..⌈m⌉ − 1];

• Aj := {(x, χ) | LO(x) = j}, for j ∈ [⌈m⌉..n];

• Bk := {(x, χ) | x = 0k ∗n−k and χ ≥ θ′2}.

We will define θ′2 in the next subsection. Note that Bk contains no level which is applied in

205

Chapter 6. Self-adaptation in Multi-modal Landscapes

the level-based theorem, and we will prove that there are not too many individuals in Bk

region later.

A′￼(⌈m⌉,1)

A′￼(⌈m⌉,2)

A′￼(⌈m⌉,d′￼⌈m⌉)

A′￼(0,1)

A′￼(0,d′￼0)

A′￼(0,2)

A′￼(1,d′￼1)

A′￼(1,1)

A′￼

(⌈m⌉−1,d′￼⌈m⌉−1)

A′￼(⌈m⌉−1,2)

A′￼(⌈m⌉−1,1) A(⌈m⌉,1)

A(⌈m⌉,2)A′￼(1,2)

A(j,1)

A(j,2)

A(j,d
j)

θ′￼2

θ′￼1

θ2(⌈m⌉ − 1)

θ1(⌈m⌉ − 1)

η′￼

η(⌈m⌉ − 1)

A(0,1)

x = 0k

A(1,1)

Bk

A
(⌈m⌉−1,d⌈m⌉−1)

A(⌈m⌉−1,1)

⋯⋯ ⋯
θ2(⌈m⌉)

θ1(⌈m⌉)

η(⌈m⌉)
A
(⌈m⌉,d⌈m⌉)

⋯
A′￼

(⌈m⌉,d′￼⌈m⌉−1)

⋯ ⋯
⋯ ⋯
⋯ ⋯ ⋯

⋯
⋯
⋯

⋯⋯
⋯

⋯
⋯

⋯ ⋯

θ2(j)

θ1(j)
η(j)

⋯
⋯
⋯
⋯
⋯

⋯

LO(x) = 0 LO(x) = 1 LO(x) = ⌈m⌉ − 1
x ≠ 0k

LO(x) = ⌈m⌉ LO(x) = j

⋯

χ
n

⋯ ⋯ ⋯

1
2

ε x

⋯

A(⌈m⌉,d⌈m⌉−1)
⋯

⋯
⋯

⋯

*n−k

*n−k

Figure 6.3: Informal illustration of the level partition on PeakedLOm,k function (Regions

A′, A, Bk are coloured by yellow, blue, grey, respectively; x represents a bistring with length

n)

To describe the ranking of sub-levels, we define that any level in A is higher than all levels

in A′, any sub-level in Aj is higher than all sub-levels in Aj−1, and any sub-level in A′
j is

higher than all sub-levels in A′
j−1 for j ≥ 1.

Now, we define sub-levels in regions A′ and A. For region A′, we first define the depth d′j

of levels A′
j:

• For j ∈ [0..⌈m⌉ − 1], d′j := min{ℓ ∈ N | εAℓ ≥ θ′2};

• For j = ⌈m⌉, d′⌈m⌉ := min{ℓ ∈ N | εAℓ ≥ θ′1}.

The depth of level in A′ implies the number of sub-levels to enter higher region, i.e., A.

206

6.5. Efficiency of MOSA-EA

Then,

• For j ∈ [0..⌈m⌉−1], we define the sub-levels for ℓ ∈ [d′j] asA′
(j,ℓ) := A′

j×[εAℓ−1,min(εAℓ, θ′2)),

• For j = ⌈m⌉, we define the low levels for ℓ ∈ [d′j−1] asA′
(⌈m⌉,ℓ) := A′

⌈m⌉×[εAℓ−1,min(εAℓ, θ′1)),

and we define the edge level as A′
(⌈m⌉,d′−1)

:= A′
⌈m⌉ × [θ′1,min(1

2
, θ′2)].

To define sub-levels in region Aj, we use two threshold values θ1(j) and θ2(j) which will

be defined in the following subsection. Similarly to (Case and Lehre, 2020), θ1(j) and θ2(j)

imply the ideal range of mutation rate to mutate the solution to level Aj. We also begin at

defining the depth dj of levels Aj,

• For j ∈ [0..⌈m⌉ − 1], dj := min{ℓ ∈ N | θ′2Aℓ ≥ θ1(j)};

• For j ∈ [⌈m⌉..n− 1], dj := min{ℓ ∈ N | εAℓ ≥ θ1(j)}.

The depth of level implies the number of sub-levels to tune the mutation rate from the lowest

to an ideal mutation rate.

• For j ∈ [0..⌈m⌉−1], we define the low levels as A(j,ℓ) := Aj× [θ′2A
ℓ−1,min(θ′2A

ℓ, θ1(j))),

for ℓ ∈ [dj−1], and define the edge levels as A(j,dj) := Aj× [θ1(j),min(1
2
, θ2(j))]∪A>j×

(min(1
2
, θ2(j + 1)),min(1

2
, θ2(j))].

• For j ∈ [⌈m⌉..n− 1], we define the low levels as A(j,ℓ) := Aj × [εAℓ−1,min(εAℓ, θ1(j))),

and we define the edge levels as A(j,dj) := Aj×[θ1(j),min(1
2
, θ2(j))]∪A>j×(min(1

2
, θ2(j+

1)),min(1
2
, θ2(j))].

• We let An contain only one sub-level A(n,1) := Aj × [ε, 1/2].

207

Chapter 6. Self-adaptation in Multi-modal Landscapes

6.5.2 Definitions and Useful Lemmas

We now define the functions θ1, η and θ2 for levels Aj where j ∈ [0..n − 1], and the values

θ′1, η′ and θ′2 for levels A′
⌈m⌉, which use in the levels definitions above.

• For Aj where j ∈ [n− 1], let

η(j) :=
1

2A

(
1−

(
1 + δ

α0pinc

) 1
j

)
, θ1(j) :=

η(j)

A
, θ2(j) := 1− q

1
j , where

q :=
1− ζ
α0

, r0 :=
1 + δ

α0 (1− pinc − pinc2)
, ζ := 1− α0(r0)

1+
√
r0

• For A0, let η(0) be any function such that η(0) = η(1)
A
− o(1), and we define θ1(0) :=

η(0)
A

, and θ2 := θ2(1)
A
.

• For A′
⌈m⌉, we define η′ := η(k), θ′1 := θ1(k) and θ′2 := θ2(k).

For convenience, let x′ ∼ pmut(x, χ) denote that individual x′ is sampled by independently

flipping each bit of x with probability χ/n, which is another expression of Line 6 in Algo-

rithm 7. Then, for all individuals (x, χ) in Aj where j ∈ [0..n − 1] and χ ∈ [εn, n/2], we

define the survival probability as r(j, χ) := minx∈Aj Prx′∼pmut(x,χ)(x
′ ∈ A≥j), and for all indi-

viduals (x, χ) in A′
j, where j ∈ [0..⌈m⌉] and χ ∈ [εn, n/2], we define the survival probability

as r′(j, χ) := minx∈A′
j
Prx′∼pmut(x,χ)(x

′ ∈ A′
≥j).

We then explain that condition ⌈m⌉ <
(
ln
(
α0pinc
1+δ

))
/
(
2A ln

(
α0

1−δ

))
k− ln

(
α0pinc
1+δ

)
+1 in The-

orem 6.5.1 essentially implies θ′2 < θ1(j) for all j ∈ [0..⌈m⌉− 1] by Lemma 6.5.1. Informally,

it means that the local optima is “sparse” and the fitness valley is “dense”.

Lemma 6.5.1. Assume that the parameters A, α0 and pinc satisfy the constraints in Theo-

rem 6.5.1. For any constant δ ∈ (0, 1), if ⌈m⌉ <
(
ln
(
α0pinc
1+δ

))
/
(
2A ln

(
α0

1−δ

))
k− ln

(
α0pinc
1+δ

)
+1,

where k = an for any constant a ∈ (0, 1], then θ′2 < θ1(j) for all j ∈ [0..⌈m⌉ − 1].

208

6.5. Efficiency of MOSA-EA

Proof. By the assumption,

⌈m⌉ <
ln
(
α0pinc
1+δ

)
2A ln

(
α0

1−δ

)k − ln

(
α0pinc
1 + δ

)
+ 1

⌈m⌉ − 1 < ln

(
α0pinc
1 + δ

)(
an

2A ln
(
α0

1−δ

) − 1

)

⌈m⌉ − 1 < ln

(
1 + δ

α0pinc

)(
1 +

1

− ln
(
α0

1−δ

)
2A
an

)

by Lemma A.2.3,

< ln

(
1 + δ

α0pinc

)
/ ln

(
1− ln

(
α0

1− δ

)
2A

an

)

we know 1+δ
α0pinc

< 1 by condition pinc > (1 + δ)/α0, then

(
1 + δ

α0pinc

) 1
⌈m⌉−1

<

(
1 + δ

α0pinc

)−
ln(1−ln(α0

1−δ) 2A
an)

ln(1+δ
α0pinc

)

= e− ln(1−ln(α0
1−δ)

2A
an) = 1− ln

(
α0

1− δ

)
2A

an
.

By the definition, θ1(j) is a monotone decreasing function, then for all j ∈ [0..⌈m⌉ − 1],

θ1(j) ≥ θ1 (⌈m⌉ − 1) = 1−
(
1 + δ

α0pinc

) 1
⌈m⌉−1

> ln

(
α0

1− δ

)
2A

an

by Lemma A.2.2,

≥ 2A

(
1−

(
1− δ
α0

) 1
k

)
= θ′2.

Then we introduce three lemmas to support the proofs for conditions (G2) and (G1) of

Theorem 2.2.1. Lemma 6.5.2 presents some useful inequalities, and Lemmas 6.5.3 and 6.5.4

can be used to prove conditions (G2) and (G1), respectively. The lemmas and the proofs

may look similar to (Case and Lehre, 2020), but they are separate statements since different

algorithms and level partitions are considered in Theorem 6.5.1 and (Case and Lehre, 2020).

209

Chapter 6. Self-adaptation in Multi-modal Landscapes

Lemma 6.5.2. Assume that the parameters A, α0, pinc, pinc2 and k satisfy the constraints

in Theorem 6.5.1. Then there exists a constant δ ∈ (0, 1/10) such that for all j ∈ [0..n− 1]

and χ ∈ [εn, n/2],

(i) θ1(0) < η(0) < εA⌊logA(
1
2ε

)⌋ ≤ 1/2 < θ2(0),

(ii) θ2(j) = Ω(1/j),

(iii) θ1(j) = O(1/j),

(iv) Aη(j) ≤ θ2(j),

(v) η(j)/A = θ1(j),

(vi) θ2(j)/A < θ2(j + 1),

(vii) Aθ1(j) ≤ θ2(j + 1),

(viii) if χ
n
≤ η(j), then r(j, Aχ) ≥ 1+δ

α0pinc
,

(ix) if χ
n
≤ θ2(j), then r(j, χ/A) ≥ 1+δ

α0(1−pinc−o(1)) .

Furthermore,

(x) if χ
n
≤ η′, then r′(⌈m⌉, Aχ) ≥ 1+δ

α0pinc
, and

(xi) if χ
n
≤ θ′2, then r′(⌈m⌉, χ/A) ≥ 1+δ

α0(1−pinc−o(1)) .

Proof. Before proving statements (i)–(ix), we derive bounds on the three constants q, ζ, and

r0. By the assumptions pinc < 2/5 and α0 ≥ 4 from Theorem 6.5.1 and δ < 1/10,

r0 <
11

6α0

< 1. (6.2)

Furthermore, since r0 = 1+δ
α0(1−pinc−o(1)) < 1 and α0 ≥ 4, we have

ζ > 1− α0(r0)
2 > 1− 1

α0

(
11

6

)2

≥ 23

144
. (6.3)

Finally, since δ, ζ, pinc ∈ (0, 1), we have from the definitions of r0 and q that

0 < q < r0. (6.4)

210

6.5. Efficiency of MOSA-EA

From the definition of the functions θ1, η, and the constant δ ∈ (0, 1/10), it follows that

θ1(0) < η(0) < η(1) <
1

2A

(
1− 1

α0pinc

)
<

1

2A

≤ εAlogA(
1
2ε

)−1 ≤ εA⌈logA(1
2ε

)⌉ ≤ 1

2
.

Also, we have from the definition of q, the constraint α0 ≥ 4 from Theorem 6.5.1, and the

bound ζ > 23/144 from Eq. (6.3) that

θ2(0) > θ2(1) > 1− q = 1− 1− ζ
α0

> 1−
1− 23

144

4
=

455

576
.

Thus, we have proven statement (i).

Statement (ii) follows directly from Lemma A.2.7, the definition of θ2 and the constant q,

θ2(j) = 1− q1/j ≥ (1− q)/j = Ω(1/j).

For statement (iii), we define c := 1+δ
α0pinc

< 1, and observe that the inequality ex ≥ 1 + x

implies

θ1(j) < 1− c1/j = 1− e(1/j) ln(c) ≤ −(1/j) ln(c) = O(1/j).

For statement (iv), first note that Eq. (6.4) and the assumption pinc < 2/5 imply

0 < q < r0 <
1 + δ

α0pinc
.

For j ≥ 1, we therefore have 1/j > 0 and

θ2(j) = 1− q1/j ≥ 1−
(
1 + δ

α0pinc

)1/j

≥ Aη(j).

For j = 0, the definition of η(0), statement (iv) for the case j = 1 shown above, and the

definition of θ2(0) gives

Aη(0) < η(1) ≤ θ2(1)

A
= θ2(0).

211

Chapter 6. Self-adaptation in Multi-modal Landscapes

Statement (v) follows from the definition of θ1(j).

We now show statement (vi). The statement is true by definition for j = 0, so assume

that j ≥ 1. We first derive an upper bound on the parameter b in terms of the constant q.

In particular, the constraint on A from Theorem 6.5.1 and the relationship 0 < q < r0 from

Eq. (6.4) gives

1

A
≤ 1

1 +
√
r0
<

1

1 +
√
q
=

1−√q
1− q

. (6.5)

The right hand side of Eq. (6.5) can be further bounded by observing that the function

g(j) := 1−q1/(j+1)

1−q1/j with q > 0 increases monotonically with respect to j. Thus, for all j ∈ N,

we have

1

A
<

1−√q
1− q

≤ 1− q1/(j+1)

1− q1/j
. (6.6)

This upper bound on parameter 1/A now immediately leads to the desired result

θ2(j)

A
=

(1− q1/j)
A

≤ 1− q1/(j+1) = θ2(j + 1). (6.7)

Statement (vii) follows by applying the previous three statements in the order (v), (iv),

and (vi)

Aθ1(j) = η(j) ≤ θ2(j)/A ≤ θ2(j + 1).

Next we prove statement (viii). The statement is trivially true for j = 0, because

r(0, Aχ) = 1, so assume that j ≥ 1. By the assumption χ/n ≤ η(j) and the definition

of η(j),

r(j, Aχ) =

(
1− Aχ

n

)j
≥ (1− Aη(j))j

≥

(
1−

(
1−

(
1 + δ

α0pinc

)1/j
))j

=
1 + δ

α0pinc
. (6.8)

212

6.5. Efficiency of MOSA-EA

Finally, we prove statement (ix). Again, the statement is trivially true for j = 0, because

r(0, χ/A) = 1, so assume that j ≥ 1. We derive an alternative upper bound on parameter

1/A in terms of r0 and q. By the constraint on A in Lemma 6.5.2,

1

A
≤ 1

1 +
√
r0

=
ln(r0)

ln(r0) +
√
r0 ln(r0)

=
ln(r0)

ln
(
r0r

√
r0

0

) =
ln r0
ln q

. (6.9)

Furthermore, note that the function h(j) :=
1−r1/j0

1−q1/j decreases monotonically with respect

to j when r0 > q > 0, and has the limit lim
j→∞

h(j) = ln(r0)/ ln(q). Using Eq. (6.9), it therefore

holds for all j ∈ N that
1

A
≤ ln r0

ln q
≤ 1− r1/j0

1− q1/j
. (6.10)

The assumption χ/n ≤ θ2(j), the definition of θ2(j), and (6.10) now give

r(j, χ/A) =
(
1− χ

An

)j
≥
(
1− θ2(j)

A

)j
=

(
1−

(
1− q1/j

)
A

)j

≥
(
1−

(
1− r1/j0

))j
= r0,

which completes the proof of statement (ix).

For statements (x)-(xi), if the first k 0-bits are not flipped, then the individual survives,

by the assumption χ/n ≤ η′ and the definition of η′,

r′(⌈m⌉, Aχ) =
(
1− Aχ

n

)k
≥ (1− Aη′)k = (1− Aη(k))k

≥

(
1−

(
1−

(
1 + δ

α0pinc

)1/k
))k

=
1 + δ

α0pinc
,

and by the assumption χ/n ≤ θ′2 and the definition of θ′2,

r′(⌈m⌉, χ/A) =
(
1− χ

An

)k
≥
(
1− θ′2

A

)k
=

(
1− θ2(k)

A

)k
=

(
1−

(
1− q1/k

)
A

)j

≥
(
1−

(
1− r1/k0

))k
= r0.

213

Chapter 6. Self-adaptation in Multi-modal Landscapes

Lemma 6.5.3. Assume that the parameters A, pinc, pinc2, k and m satisfy the constraints

in Theorem 6.5.1. Then there exists a constant δ ∈ (0, 1/10) such that for all j ∈ [0..n− 1]

and ℓ ∈ [dj], if the (µ, λ) selection of the MOSA-EA selects a parent (x, χ/n) ∈ A(j,ℓ), then

the offspring (x′, χ′/n) created by self-adapting mutation rate and mutating bitstring satisfies

Pr((x′, χ′/n) ∈ A≥(j,ℓ)) ≥ 1+δ
α0
.

Furthermore, there exists a constant δ ∈ (0, 1/10) such that for all j ∈ [0..⌈m⌉] and

ℓ ∈ [d′j], if the (µ, λ) selection of the MOSA-EA selects a parent (x, χ/n) ∈ A′
(j,l), then the

offspring (x′, χ′/n) created in by self-adapting mutation rate and mutating bitstring satisfies

Pr((x′, χ′/n) ∈ A′
≥(j,ℓ)) ≥

1+δ
α0
.

Proof. We will prove the stronger statement for Eq. (6.5.3) that with probability (1+ δ)/α0,

we have simultaneously

x′ ∈ A≥j and min
{χ
n
, θ1(j)

}
≤ χ′

n
≤ θ2(j). (6.11)

The event Eq. (6.11) is a subset of the event (x′, χ′/n) ∈ A(j,ℓ), because a lower level A(j,ℓ)

may contain search points (x′, χ′/n) with mutation rates χ′/n < min(χ/n, θ1(j)).

By the definition of levels, the parent satisfies x ∈ A≥j and χ/n ≤ θ2(j). We distinguish

between two cases.

Case 1: χ/n ≤ η(j). By Lemma 6.5.2 (i), and the monotonicity of η, we have η(j) < 1/2.

Note that in this case, it is still “safe” to increase the mutation rate. For a lower bound, we

therefore pessimistically only account for offspring where the mutation parameter is increased

from χ to min
(
Aχ, εnA⌊logA(

1
2ε

)⌋
)
.

Note first that since A > 1, we have

χ′

n
=

min
(
Aχ, εnA⌊logA(

1
2ε

)⌋
)

n
>
χ

n
.

214

6.5. Efficiency of MOSA-EA

Also, Lemma 6.5.2 (iv) implies the upper bound

χ′

n
≤ Aχ

n
≤ Aη(j) ≤ θ2(j).

To lower bound the probability that x′ ∈ A≥j, we consider the event where the mutation

rate is increased, and the event that none of the first j bits in the offspring are mutated

with the new mutation parameter min
(
Aχ, εnA⌊logA(

1
2ε

)⌋
)
. By definition of Algorithm 18

and using Lemma 6.5.2 (viii), these two events occur with probability at least

pincr(j, Aχ) ≥ (1 + δ)/α0. (6.12)

Case 2: η(j) < χ/n ≤ θ2(j). Note that in this case, it may be “unsafe” to increase the

mutation rate. For a lower bound, we pessimistically only consider mutation events where

the mutation parameter is decreased from χ to χ/A. Analogously to above, since 1/A < 1,

we have

χ′

n
=

χ

An
<
χ

n
≤ θ2(j).

Furthermore, Lemma 6.5.2 (v) implies the lower bound

χ′

n
=

χ

An
>
η(j)

An
≥ θ1(j).

To lower bound the probability that x′ ∈ A≥j, we consider the event where the mutation

parameter is decreased from χ to χ/A, and the offspring x′ is not downgraded to a lower

level. By the definition of Algorithm 18, pinc2, r(j, χ/A), and using Lemma 6.5.2 (ix), these

two events occur with probability

(1− pinc − pinc2)r(j, χ/A) ≥ (1 + δ)/α0.

Hence, we have shown that in both cases, the event in Eq. (6.11) occurs with probability

at least (1 + δ)/α0.

215

Chapter 6. Self-adaptation in Multi-modal Landscapes

Now, we consider Eq. (6.5.3). By the definition of levels and Lemma 6.5.1, we know that

individuals in A′
(j,ℓ) have mutation rates χ/n < θ′2 < θ1(j) < η(j) for all j ∈ [0..⌈m⌉ − 1]

and ℓ ∈ [d′j]. Thus, it is “safe” to increase the mutation rate, such that a lower bound of the

probability that x′ ∈ A≥j is

pincr
′(j, Aχ) ≥ (1 + δ)/α0.

Note that for the individual (x, χ) ∈ A′
(j,d′j)

, the offspring (x′, χ′) ∈ A≥j ⊂ A′
≥j if the mutation

rate χ of the individual is increased from χ to Aχ and none of the first j bits of x are flipped.

For the individuals in A′
(⌈m⌉,ℓ), where ℓ ∈ [d′j], analogously to the proofs of Eq. (6.5.3), we

distinguish two cases: χ/n ≤ η′ and η′ ≤ χ/n < θ′2, where lower bounds of such probabilities

that x′ ∈ A≥j are, by Lemma 6.5.2 (x)-(xi),

pincr
′(⌈m⌉, Aχ) ≥ (1 + δ)/α0,

and

(1− pinc − pinc2)r′(⌈m⌉, χ/A) ≥ (1 + δ)/α0,

respectively. Thus, the proof is completed.

Lemma 6.5.4. Assume that the parameters A, pinc, pinc2, k and m satisfy the constraints in

Theorem 6.5.1. Then for any j ∈ [0..n−1], and any search point (x, χ/n) ∈ A(j,dj) selected by

the (µ, λ) selection of the MOSA-EA applied to PeakedLOm,k, the offspring (x′, χ′/n) cre-

ated by self-adapting mutation rate and mutating bitstring satisfies Pr((x′, χ′/n) ∈ A≥(j+1,1))

= Ω(1/j).

Proof. By the definition of levelA(j,dj), we have θ1(j) ≤ χ/n ≤ θ2(j) and so by Lemma 6.5.2 (vi),

we have χ/(An) ≤ θ2(j + 1). Given the definition of levels A(j+1,1), it suffices for a lower

bound to only consider the probability of producing an offspring (x′, χ′/n) with lowered

mutation rate χ′/n = χ/(An) ≤ θ2(j + 1) and fitness LO(x′) ≥ j + 1.

216

6.5. Efficiency of MOSA-EA

We claim that if the mutation rate is lowered, the offspring has fitness LO(x′) ≥ j + 1

with probability Ω(1/j). Since the parent belongs to level A(j,dj), it has fitness LO(x) ≥ j,

so we need to estimate the probability of not flipping the first j bits, and obtain a 1-bit in

position j + 1.

We now estimate the probability of obtaining a 1-bit in position j + 1, assuming that the

parent x already has a 1-bit in this position, for any j ∈ [0..n−1]. Using that θ2(j) decreases

monotonically in j, the definition of θ2(0), and the lower bound on the parameter ζ > 23/144

from Eq. (6.3), the probability of not mutating bit-position j+1 with the lowered mutation

rate χ/(An) is

1− χ

An
≥ 1− θ2(j)/A ≥ 1− θ2(0)/A

= 1− θ2(1) = 1− 1− ζ
α0

> 1−
1− 23

144

α0

= Ω(1).

If the parent x does not have a 1-bit in position j + 1, we need to flip this bit-position.

By the definition of θ1(j), the probability of this event is in the case j ≥ 1

χ

An
≥ θ1(j)/A =

1

2A3

(
1−

(
1 + δ

α0pinc

)1/j
)

(6.13)

≥ 1

2A3j

(
1− 1 + δ

α0pinc

)
= Ω(1/j), (6.14)

where the last inequality follows from Lemma A.2.7. If j = 0, we use that θ1(j) decreases

monotonically in j and Eq. (6.13)–(6.14) to show that the probability of flipping bit j+1 = 1

is

χ

An
≥ θ1(0)

A
>
θ1(1)

A
= Ω(1).

The claim that we obtain a 1-bit in position j + 1 with probability Ω(1/j) is therefore true.

Thus, the probability of lowering the mutation rate to bχ/n, obtaining a 1-bit in position

j + 1, and not flipping the first j positions is, using the definition of θ2(j),

(1− pinc)Ω
(
1

j

)(
1− χ

An

)j
> Ω

(
1

j

)
(1− θ2(j))j = Ω

(
1

j

)(
1− ζ
α0

)
= Ω

(
1

j

)
,

217

Chapter 6. Self-adaptation in Multi-modal Landscapes

which completes the proof.

Too many individuals with high fitness but incorrect mutation rate would ruin the progress

of the population. We therefore need to prove that there are not too many such “bad”

individuals in the population. We first define a “bad” region B ⊂ Y containing search points

with a mutation rate that is too high, and we say an individual (x, χ/n) ∈ B has too high

mutation rate. For the constant ζ ∈ (0, 1), let

B :=
{
(x, χ/n) ∈ Aj × [ε, 1/2] |(
j ∈ [0..n− 1] ∧ ∀y ∈ X\{0k∗n−k} Pr

x′∼pmut(y,χ)
(x′ ∈ A≥j) <

1− ζ
α0

)
∨
(
∀y = 0k ∗n−k Pr

x′∼pmut(y,χ)
(x′ = 0k∗n−k) < 1− ζ

α0

)}
. (6.15)

By θ2(j), θ′2 and Bk, the region B can also be expressed as

B = ∪n−1
j=0A>j × (min(1/2, θ2(j + 1)),min(1/2, θ2(j))] ∪Bk. (6.16)

We show that too many such individuals in the population is rare by Lemma 6.5.5.

Lemma 6.5.5. Let B ⊂ Y be as defined in Eq. (6.15) for a constant ζ ∈ (0, 1). Then for

any generation t ∈ N of the algorithm used in Theorem 6.5.1 on PeakedLOm,k with k and

m described in Theorem 6.5.1, Pr(|B ∩ Pt| ≥ µ(1− ζ/2)) ≤ e−Ω(µ).

Proof. Consider some parent (x, χ/n) selected in generation t−1 ≥ 0 and the (µ, λ) selection.

First a new mutation parameter χ′ is chosen, a new bit-string x′ is obtained from x using

bitwise mutation with mutation rate χ′/n. To obtain an upper bound on the probability

that (x′, χ′/n) is in B, we proceed in cases based on the outcome of sampling χ′, namely,

whether (x′, χ′/n) is in B.

Case 1: (x, χ′/n) ∈ B. It follows immediately from the definition of B that independently

218

6.5. Efficiency of MOSA-EA

of the chosen parent x, it holds

Pr ((x′, χ′/n) ∈ B) <
1− ζ
α0

.

Case 2: (x, χ′/n) /∈ B.

• If x ̸= 0k∗n−k then for (x′, χ′/n) ∈ B to end up in B, by Eq. (6.16), it is necessary that

x′ ∈ A≥u for some u > j, where x ∈ Aj and r(u, χ′) < (1 − ζ)/α0. Since χ′/n < 1/2,

the probability of obtaining x′ ∈ A≥u or x′ = 0k∗n−k is no more than(
1− χ′

n

)u−1(
χ′

n

)
<

(
1− χ′

n

)u
<

1− ζ
α0

.

• If x = 0k∗n−k then for (x′, χ′/n) ∈ B to end up in B, it is necessary that x′ = 0k∗n−k,

where r′(⌈m⌉, χ′) < (1 − ζ)/α0. Then the probability of obtaining x′ ∈ A≥u or x′ =

0k∗n−k is no more than (
1− χ′

n

)k
<

(
1− θ′2

n

)k
<

1− ζ
α0

.

Since each of the λ individuals in population Pt are sampled independently and iden-

tically, |B ∩ Pt| is stochastically dominated by a binomially distributed random variable

Z ∼ Bin
(
λ, 1−ζ

α0

)
, which has expectation µ(1− ζ). By a Chernoff bound,

Pr

(
|B ∩ Pt| ≥ µ

(
1− ζ

2

))
(6.17)

≤ Pr

(
Z ≥ µ

(
1− ζ

2

))
= Pr

(
Z ≥ E[Z]

(
1 +

1

2(1− ζ)

))
(6.18)

= e−Ω(µ).

219

Chapter 6. Self-adaptation in Multi-modal Landscapes

6.5.3 Applying the Level-based Theorem

Now, we use Lemmas 6.5.2, 6.5.3, 6.5.4 and 6.5.5 to prove Theorem 6.5.1 via Theorem 2.2.1.

Proof (Theorem 6.5.1). We say that a generation t is “failed” if the population Pt contains

more than (1− ζ/2)µ individuals in region B. We will optimistically assume that no gen-

eration fails. Under this assumption, we will prove that the conditions of Theorem 2.2.1

hold, leading to an upper bound on the expected number of function evaluations t0(n) until

a search point in A(n,1) is created. In the end we will use a restart argument to account for

failed generations.

Each strict non-dominated front has at most ⌈logA (1/2ε)⌉ = c′ log(n) individuals where

c′ > 0 is some constant, so there are at least λ/(c′ log(n)) ∈ Ω (log(n)) fronts. Let c′ :=⌈
logA

(
n
2ε

)⌉
/ log(n), where c′ log(n) is the maximal number of individuals in a front. Let

γ0 := b′/log(n) for some constant 0 < b′ < ζ/(2α0c
′). By the assumption, the number

of individuals are not in region B and have chance to be selected is at least ζµ/2. Since

γ0λ = b′λ/log(n) < ζλ/(2α0c
′ log(n)) = ζµ/(2 log(n)) < ζµ/2, therefore any individual

ranked in the first γ0λ positions will be selected with probability 1
µ

by the (µ, λ) selection.

By the ranking mechanism, if an individual (x, χ) ranked in the first γλ positions where

γ ∈ (0, γ0], then any individual (x′, χ′) where either f(x′) > f(x) or χ′ > χ will be ranked

in the first γλ positions, which guarantees individuals in A′
>(j,ℓ) are ranked in the first γλ

positions if there are at least γλ individuals in A′
≥(j,ℓ), and guarantees individuals in A>(j,ℓ)

are ranked in the first γλ positions if there are at least γλ individuals in A≥(j,ℓ).

Now we consider (G1)-(G2) of Theorem 2.2.1 in regions A′ and A.

Region A′: For γ ∈ (0, γ0], if there are γλ individuals in level A′
>(j,ℓ) for some j ∈ [0..⌈m⌉]

and ℓ ∈ [d′j], then the probability of selecting an individual from A′
>(j,ℓ) is γα0. Since

220

6.5. Efficiency of MOSA-EA

|Pt ∩B| ≤ (1 − ζ/2)µ, it follows that all γλ < (ζ/2)µ individuals of A′
≥(j,ℓ) are among the

µ fittest in the population. Therefore, the probability of selecting an individual from A′
>(j,ℓ)

indeed is γλ/µ = γα0. We assume that the current population has at least γ0λ individuals

in levels A′
≥(j,ℓ). To verify condition (G2), we must estimate the probability of producing an

offspring in levels A′
>(j,ℓ), assuming that there are at least γλ individuals in levels A′

>(j,ℓ), for

any γ ∈ (0, γ0]. We distinguish five cases:

• Case 1: j ∈ [0..⌈m⌉−1] and ℓ ∈ [d′j−1]. Assuming that the parent (x, χ/n) is in A′
(u,v) ⊆

A′
≥(j,ℓ+1). Since χ/n < θ′2 < θ1(j) < η(j) by θ2, η and Lemma 6.5.1, it is “safe” to

increase the mutation rate. For a lower bound, we therefore pessimistically only account

for offspring where the mutation parameter is increased to min(χ, εnA⌊logA(
1
2ε

)⌋). The

probability of producing an offspring in levels A′
≥(j,ℓ+1) is at least pinc(1 − Aχ/n)j >

pinc(1− Aθ′2)j > pinc(1− Aη(j))j ≥ (1 + δ)/α0.

• Case 2: j ∈ [0..⌈m⌉ − 1] and ℓ = d′j. We use a stronger assumption that there are

at least γλ individuals in A≥(j,1) for any γ ∈ (0, γ0], which is a subset of A′
>(j,d′j)

. To

produce an offspring in levels A≥(j,1), it suffices to first select a parent from A≥(j,1),

and secondly create an offspring in levels A≥(j,1). The probability of selecting such a

parent is at least γα0. By Lemma 6.5.3, the probability of producing an offspring in

levels A≥(j,1) is at least (1 + δ)/α0.

• Case 3: j = ⌈m⌉ and ℓ ∈ [d′j− 2]. Similarly to Case 1, it is “safe” to increase the muta-

tion rate, since χ/n < η′. For a lower bound, we therefore pessimistically only account

for offspring where the mutation parameter is increased to min(Aχ, εnA⌊logA(
1
2ε

)⌋). The

probability of producing an offspring in levels A′
≥(⌈m⌉,ℓ+1) is at least 1 + δ/α0.

• Case 4: j = ⌈m⌉ and ℓ = d′j − 1. By Lemma 6.5.3, the probability of producing an

offspring in levels A′
≥(⌈m⌉,d′⌈m⌉)

is at least 1+δ
α0

.

221

Chapter 6. Self-adaptation in Multi-modal Landscapes

• Case 5: j = ⌈m⌉ and ℓ = d′⌈m⌉. We use a stronger assumption that there are at least

γλ individuals in A≥(0,1) for any γ ∈ (0, γ0], which is a subset of A′
>(⌈m⌉,d′⌈m⌉)

. The

probability of producing an offspring in levels A≥(0,1) is at least (1 + δ)/α0.

To produce an offspring in levels A′
>(j,ℓ), it suffices to firstly select a parent (x, χ/n) from

A′
>(j,ℓ), and then create an offspring (x′, χ′/n) in levels A′

>(j,ℓ). The probability of selecting

such a parent is at least γα0. Thus, the probability that the offspring (x′, χ′/n) in levels

A′
>(j,ℓ), is at least γα0

1+δ
α0

= γ(1 + δ), which (G2) is satisfied.

For condition (G1) of Theorem 2.2.1, we assume that there are γ0λ individuals in Pt in

A′
≥(j,ℓ) where j ∈ [0..⌈m⌉] and ℓ ∈ [d′j]. To verify condition (G1), we assume that the parent

(x, χ/n) is in A′
(j,ℓ), and we distinguish four cases:

• Case 1: j ∈ [0..⌈m⌉ − 1] and ℓ ∈ [d′j − 1]. The probability of the offspring in levels

A′
≥(j,ℓ+1) is at least pinc(1− χ/n)⌈m⌉−1 = Ω(1).

• Case 2: j ∈ [0..⌈m⌉ − 1] and ℓ = d′j. The probability of the offspring in region A, i.e.,

A≥(j,1), is at least pinc(1− χ/n)⌈m⌉−1 = Ω(1).

• Case 3: j = ⌈m⌉ and ℓ ∈ [d′j − 1]. The probability of the offspring in levels A′
≥(⌈m⌉,ℓ+1)

is at least pinc(1− χ/n)⌈m⌉−1 = Ω(1).

• Case 4: j = ⌈m⌉ and ℓ = d′⌈m⌉. The probability of the offspring in levels A≥(0,d0) is at

least pinc2(1− (1− 1/2)⌈m⌉−1) = Ω(1/n), where the mutation parameter is changed to

min(χ, εnA⌊logA(
1
2ε

)⌋) and at least one 0-bit of first k bit-position is flipped.

Thus, a lower bound of the probability of producing an offspring in higher levels, i.e., A′
>(j,ℓ),

is γ0α0Ω (1/n) = Ω (1/n log(n)) =: z′(⌈m⌉, d′⌈m⌉) and γ0α0Ω (1) = Ω (1/log(n)) =: z′ (j, ℓ)

except the case of j = ⌈m⌉ and ℓ = d′⌈m⌉.

222

6.5. Efficiency of MOSA-EA

Region A: To verify condition (G2), we distinguish two cases for all j ∈ [0..n − 1] and

ℓ ∈ [dj]:

• Case 1: ℓ ∈ [dj − 1]. Firstly, we need to estimate the probability of producing an

offspring in levels A≥(j,ℓ+1), assuming that there are at least γλ individuals in levels

A≥(j,ℓ+1), for any γ ∈ (0, γ0]. To produce an offspring in levels A≥(j,ℓ+1), it suffices to

first select a parent (x, χ/n) from A≥(j,ℓ+1), and secondly create an offspring (x′, χ′/n)

in levels A≥(j,ℓ+1). The probability of selecting such a parent is at least γα0. Assuming

that the parent is in level A(u,v) ⊆ A≥(j,ℓ+1), and applying Lemma 6.5.3 to level A(u,v),

the probability that the offspring (x′, χ′/n) is in levels A(u,v) ⊆ A≥(j,ℓ+1) is (1 + δ)/α0

for some δ ∈ (0, 1). Thus the probability of selecting a parent in levels A≥(j,ℓ+1), then

producing an offspring in levels A≥(j,ℓ+1), is at least γα0 (1 + δ) /α0 = γ(1 + δ), so

condition (G2) is satisfied.

• Case 2: ℓ = dj. We assume that there are at least γλ individuals in levels A≥(j+1,1),

for γ ∈ (0, γ0]. We again apply Lemma 6.5.3 to show the probability of selecting an

individual from A≥(j+1,1) and producing a new individual also in A≥(j+1,1) is at least

γ(1 + δ), showing condition (G2) is satisfied.

To verify condition (G1), we assume that there are γ0λ individuals in Pt in A≥(j,ℓ) where

j ∈ [0..n− 1] and ℓ ∈ [dj]. If the parent (x, χ/n) is in A≥(j,ℓ), then

• Case 1: ℓ ∈ [d′j − 1]. The probability of the offspring in levels A≥(j,ℓ+1) is at least

(1 + δ)/α0 = Ω(1).

• Case 2: ℓ = d′j. By Lemma 6.5.4, the probability of the offspring in A≥(j+1,1) is at least

Ω (1/j).

Thus, a lower bound of the probability of producing an offspring in higher levels, i.e., A(j,dj)

223

Chapter 6. Self-adaptation in Multi-modal Landscapes

is γ0α0Ω (1) = Ω (1/log(n)) =: z (j, dj) for j ∈ [0..⌈m⌉], and γ0α0Ω (1/j) = Ω (1/j log(n)) =:

z (j, ℓ) for j ∈ [0..⌈m⌉] and ℓ ∈ [dj − 1].

To verify that λ ≥ c log2(n) is large enough to satisfy condition (G3), we first must

calculate the number of total sub-levels m′. The depth of each level j is no more than

d′j < ⌈logA
(
n
2ε

)
⌉ = O (log(n)) for all j ∈ [0..⌈m⌉] and dj < ⌈logA

(
n
2ε

)
⌉ = O (log(n)) for all

j ∈ [0..n− 1]. Therefore, by γ0 = Ω(1/log(n)), m′ = O (n log(n)) and zmin = Ω(1/n log(n)),

we know that λ ≥ c log2(n) satisfies condition (G3) for a large enough c > 1.

Overall, assuming no failure, the expected time to reach the last level can be calculated

by considering regions A′ and A separately, which is no more than

t0(n) ≤
8

δ2

(⌈m⌉−1∑
j=0

d′j∑
ℓ=1

(
λ log

(
6δλ

4 + z′(j,ℓ)δλ

)
+

1

z′(j,ℓ)

)

+

d′j−1∑
ℓ=1

(
λ log

(
6δλ

4 + z′(⌈m⌉,ℓ)δλ

)
+

1

z′(⌈m⌉,ℓ)

)

+ λ log

(
6δλ

4 + z′(⌈m⌉,d′j)
δλ

)
+

1

z′(⌈m⌉,d′j)

+
n−1∑
j=0

dj−1∑
ℓ=1

O

(
λ log

(
1

z(j,ℓ)

)
+

1

z(j,ℓ)

)

+
n−1∑
j=0

O

(
λ log(λ) +

1

z(j,dj)

))

=O(nλ log(n) log (log(n)) + n2 log(n)).

Finally, we account for “failed” generations where our assumption that there are less than

(1 − ζ/2)µ individuals in region B does not hold. We refer to a sequence of 2t0(n)/λ

generations as a phase, and call a phase good if for 2t0(n)/λ consecutive generations there

are fewer than (1 − ζ/2)µ individuals in region B. By Lemma 6.5.5 and a union bound, a

phase is good with probability 1− 2t0(n)/λe
−Ω(µ) = Ω(1), for µ = Ω(log(n)). By Markov’s

inequality, the probability of reaching a global optimum in a good phase is at least 1/2.

224

6.6. Conclusion

Hence, the expected number of phases required, each costing 2t0(n) function evaluations, is

O(1).

6.6 Conclusion

In this chapter, we first introduced the MOSA-EA for single-objective optimisation, which

treats parameter control from the perspective of multi-objective optimisation: The algorithm

simultaneously maximises the fitness and the mutation rates. To achieve this, we proposed

the multi-objective sorting partial order mechanism, which sorts the population based on

the strict non-dominated fronts. Theoretically, we demonstrated that the MOSA-EA can

escape from sparse local optima of PeakedLOm,k for any k ∈ Ω(n), where fixed mutation

rate EAs may be trapped.

225

226

Chapter Seven

Self-adaptation on Complex

Combinatorial Optimisation Problems

Authors: Xiaoyu Qin and Per Kristian Lehre

This chapter is based on the following publication:

Self-adaptation via Multi-objectivisation: An Empirical Study (Qin and Lehre, 2022) which

is published in Parallel Problem Solving from Nature XVII (PPSN’22).

227

Chapter 7. Self-adaptation on Complex Combinatorial Optimisation Problems

7.1 Introduction

In Chapter 6, a new self-adaptive EA, the multi-objective self-adaptive EA (MOSA-EA), was

proposed to optimise single-objective functions, which treats parameter control from multi-

objectivisation. The algorithm maximises the fitness and the mutation rates simultaneously,

allowing individuals in dense fitness valleys and on sparse local optima to co-exist on a

non-dominated Pareto front. The previous study showed its efficiency in escaping a local

optimum with unknown sparsity, where some fixed mutation rate EAs including non-linear

selection EAs become trapped. However, it is unclear whether the benefit of the MOSA-EA

can also be observed for more complex problems, such as NP-hard combinatorial optimisation

problems and noisy fitness functions.

This chapter continues the study of MOSA-EA through an empirical study of its perfor-

mance on selected combinatorial optimisation problems. We find that the MOSA-EA not

only has a comparable performance on unimodal functions, e.g., LeadingOnes and One-

Max, but also outperforms eleven randomised search heuristics considered on a bi-modal

function with a sparse local optimum, i.e., Funnel (Dang et al., 2021a). For NP-hard

combinatorial optimisation problems, the MOSA-EA increasingly outperforms other algo-

rithms for harder NK-Landscape and Max-k-Sat instances. In particular, the MOSA-EA

outperforms a problem-specific MaxSat solver on some hard Max-k-Sat instances.

7.2 Parameter Settings in MOSA-EA

One of the aims of self-adaptation is to reduce the number of parameters that must be set by

the user. MOSA-EA has three parameters ε, pinc and A, in addition to the population sizes

λ and µ (As mentioned in Chapter 6, the MOSA-EA applies Algorithm 17 in all experiments

228

7.2. Parameter Settings in MOSA-EA

conducted in this chapter). We will first investigate how sensitive the algorithm is to these

parameters. Adding three new parameters to adapt one parameter seems contradictory to

the aim of self-adaptation. However, we will show later that these parameters need not to

be tuned carefully. We use the same parameter setting of the MOSA-EA for all experiments

in this chapter to show that the MOSA-EA does not require problem-specific tuning of the

parameters.

The parameter ε is the lower bound of the mutation rate in the MOSA-EA. In fixed

mutation rate EAs, we usually set a constant mutation parameter χ. To cover the range

of all possible mutation rates χ/n, we recommend to set the lowest mutation rate ε =

c/(n ln(n)), where c is some small constant. In this chapter, we set ε = 1/(2n ln(n)). As

mentioned before, A > 0 and pinc ∈ (0, 1) are two self-adapting mutation rate parameters in

Algorithm 17. We use simple functions as a starting point to empirically analyse the effect

of setting the parameters of A and pinc. We run the MOSA-EA with different parameters A

and pinc on OneMax, LeadingOnes and Funnel (Definition A.1.2) with problem instance

size n = 100 which represent single-modal and multi-modal functions. For each pair of A

and pinc, we execute the algorithm 100 times, with population sizes λ = 104 ln(n) and

µ = λ/8. Figures 7.1 (a), (b) and (c) show the medians of the runtimes of the MOSA-EA

for different parameters A and pinc on OneMax, LeadingOnes and Funnel, respectively.

The maximal number of fitness evaluations is 109.

From Figures 7.1, the algorithm finds the optimum within 107 function evaluations for an

extensive range of parameter settings. The algorithm is slow when A and pinc are too large.

Therefore, we recommend to set pinc ∈ (0.3, 0.5) and A ∈ (1.01, 1.5). For the remainder of

the chapter, we will choose pinc = 0.4 and A = 1.01. We also recommend to use a sufficiently

large population size λ = c ln(n) for some large constant c. We will state λ and µ later.

229

Chapter 7. Self-adaptation on Complex Combinatorial Optimisation Problems

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pinc

1.01

1.17

1.33

1.49

1.65

1.81

1.97

A

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pinc

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pinc

(c)

106

107

108

109

Figure 7.1: Median runtimes of MOSA-EA for given A and pinc on (a) OneMax, (b)

LeadingOnes and (c) Funnel over 100 independent runs (n = 100).

7.3 Experimental Settings and Methodology

We compare the performance of the MOSA-EA with eleven other heuristic algorithms on

three classical pseudo-Boolean functions and two more complex combinatorial optimisation

problems. We also empirically study the MOSA-EA in noisy environments. In this section,

we will first introduce the other algorithms and their parameter settings. We will then

describe the definitions of benchmarking functions and problems. We will also indicate the

statistical approach applied in the experiments.

7.3.1 Parameter Settings in Other Algorithms

We consider eleven other heuristic algorithms, including three single-individual elitist al-

gorithms, random search (RS), random local search (RLS) and (1+1) EA, two population-

based elitist algorithms, (1 + (λ, λ)) GA (B. Doerr et al., 2015) and FastGA(B. Doerr et

al., 2017), two estimation of distribution algorithms (EDAs), cGA(Harik et al., 1999) and

UMDA(Mühlenbein and Paaß, 1996), two non-elitist EAs, 3-tournament EA and (µ, λ) EA,

and two self-adjusting EAs, (µ, λ) self-adaptive EA (Case and Lehre, 2020) and self-adjusting

230

7.3. Experimental Settings and Methodology

population size (1, {F 1/sλ, λ/F}) EA (we call it SA-(1, λ) EA in short)(Hevia Fajardo and

Sudholt, 2021a), and a problem-specific algorithm, Open-WBO(Martins et al., 2014). These

heuristic algorithms are proved to be efficient in many scenarios, e.g., in multi-modal and

noisy optimisation (Antipov et al., 2022; Buzdalov and Doerr, 2017; Case and Lehre, 2020;

Dang et al., 2021a,b; B. Doerr et al., 2017; Droste, 2004; Friedrich et al., 2016; Hevia Fajardo

and Sudholt, 2021b; Lehre and P. T. H. Nguyen, 2021). Open-WBO is a MaxSat solver

that operates differently than randomised search heuristics. It was one of the best MaxSat

solvers in MaxSAT Evaluations 2014, 2015, 2016 and 2017 (Ansótegui et al., 2017).

It is essential to set proper parameters for each algorithm for a comparative study (Bartz-

Beielstein et al., 2020). In the experiments, we use parameter recommendations from the

existing theoretical and empirical studies, which are summarised in Table 7.1.

Note that to investigate the effect of self-adaptation via multi-objectivisation, the (µ, λ)

self-adaptive EA applied the same self-adapting mutation rate strategy and initialisation

method as the MOSA-EA, instead of the strategy used in (Case and Lehre, 2020). The

only difference between the (µ, λ) self-adaptive EA and the MOSA-EA in the experiments is

the sorting mechanism: The (µ, λ) self-adaptive EA uses the fitness-first sorting mechanism

(Case and Lehre, 2020) and the MOSA-EA uses the multi-objective sorting mechanism.

7.3.2 Theoretical Benchmarking Functions

We first consider two well-known unimodal functions, OneMax and LeadingOnes. One

would not expect to encounter these functions in real-world optimisation. However, they

serve as a good starting point to analyse the algorithms. We cannot expect good per-

formance from an algorithm which performs poorly on these simple functions. We also

consider Funnel which was proposed by Dang et al. (2021a), It is a bi-modal function

231

Chapter 7. Self-adaptation on Complex Combinatorial Optimisation Problems

Table
7.1:

P
aram

eter
settings

ofalgorithm
s

considered
in

this
chapter

C
ategory

A
lgorith

m
P
aram

eter
S
ettin

gs

E
litist

E
A

s

R
S

-

R
LS

-

(1+
1)

E
A

M
utation

rate
χ
/n

=
1/n

(1
+
(λ
,λ

))
G

A
(B

.D
oerr

et
al.,2015)

M
utation

rate
p
=
λ
/n;C

rossover
bias

c
=

1/λ;

P
opulation

size
λ
=

2
ln
(n
)(B

uzdalov
and

D
oerr,2017)

FastG
A

(B
.D

oerr
et

al.,2017)
β
=

1.5
(B

.D
oerr

et
al.,2017)

E
D

A
s

cG
A

(H
arik

et
al.,1999)

K
=

7 √
n
ln
(n
)

(Sudholt
and

W
itt,2016)

U
M

D
A

(M
ühlenbein

and
P
aaß,1996)

µ
=
λ
/8

N
on-E

litist
E

A
s

3-tournam
ent

E
A

M
utation

rate
χ
/n

=
1.09812/n

(D
ang

et
al.,2021a,b)

(µ
,λ

)
E

A
M

utation
rate

χ
/n

=
2.07/n;P

opulation
size

µ
=
λ
/8

(Lehre,2010;Lehre
and

Y
ao,2012)

Self-adjusting
E

A
s

SA
-(1,λ

)
E

A
(H

evia
Fajardo

and
Sudholt,2021a)

P
opulation

size
λ
in
it
=

1,
λ
m
a
x
=
en
F

1
/
s;
F

=
1.5,

s
=

1
(H

evia
Fajardo

and
Sudholt,2021a)

SA
-E

A
P
opulation

size
µ
=
λ
/8;

A
=

1.01,
p
in
c
=

0.4,
ε
=

1/(2
ln
(n
))

M
O

SA
-E

A
P
opulation

size
µ
=
λ
/8;

A
=

1.01,
p
in
c
=

0.4,
ε
=

1/(2
ln
(n
))

M
a
x
Sat

solver
O

pen-W
B

O
(M

artins
et

al.,2014)
D

efault
(W

e
use

version
2.1:

https://github.com
/sat-group/open-w

bo)

232

https://github.com/sat-group/open-wbo

7.3. Experimental Settings and Methodology

with sparse local optima and a dense fitness valley which belongs to the problem class

SparseLocalOptα,ε (Dang et al., 2021b). The parameters u, v, w in the Funnel function

describe the sparsity of the deceptive region and the density of the fitness valley. Dang

et al. (2021a) proved that the (µ+ λ) EA and the (µ, λ) EA are inefficient on Funnel

if v − u = Ω(n) and w − v = Ω(n), while the 3-tournament EA with the mutation rate

χ/n = 1.09812/n can find the optimum in polynomial runtime. We consider Funnel with

the parameters u = 0.5n v = 0.6n and w = 0.7n which satisfy the restrictions above.

For each problem, we independently run each algorithm 30 times for each problem size

n ∈ {100, 110, . . . , 200}. For fair comparison, we set sufficiently large population sizes λ =

104 ln(n) for the MOSA-EA, the 3-tournament EA, the (µ, λ) EA, the UMDA and the (µ, λ)

self-adaptive EA.

7.3.3 Complex Combinatorial Optimisation Problems

We consider two NP-hard problems, the random NK-Landscape problem and the random

Max-k-Sat problem, which feature many local optima (Kauffman and Weinberger, 1989;

Ochoa and Chicano, 2019). We compare the performance of the MOSA-EA with other

popular randomised search heuristics in a fitness evaluation budget. We also compare MOSA-

EA with the MaxSat solver Open-WBO (Martins et al., 2014) for a fixed CPU budget.

We use the same population size λ = 20000 for the MOSA-EA, the 3-tournament EA, the

(µ, λ) EA, the UMDA and the (µ, λ) self-adaptive EA. The MOSA-EA are compared with

the other algorithms using Wilcoxon rank-sum tests (Wilcoxon, 1992).

Random NK-Landscape problems We generate 100 random NK-Landscape in-

stances with n = 100 for each k ∈ {5, 10, 15, 20, 25} by uniformly sampling values between

0 and 1 in the lookup table. We run each algorithm once on each instance and record the

233

Chapter 7. Self-adaptation on Complex Combinatorial Optimisation Problems

highest fitness value achieved in the fitness evaluation budget of 108.

Random Max-k-Sat problems Similarly with the NK-Landscape experiments, we

run each algorithm on these random instances and record the smallest number of unsatisfied

clauses during runs of 108 fitness function evaluations. Additionally, we run Open-WBO and

the MOSA-EA on the same machine in one hour CPU time. The MOSA-EA is implemented

in OCaml, while OpenWBO is implemented in C++, which generally leads to faster-compiled

code than OCaml.

7.4 Results and Discussion

7.4.1 Theoretical Benchmarking Functions

Figures 7.2 (a), (b) and (c) show the runtimes of the MOSA-EA and nine other heuristic al-

gorithms on OneMax, LeadingOnes and Funnel over 30 independent runs, respectively.

Based on theoretical results (He and Yao, 2004), the expected runtimes of the (1+1) EA are

O (n log(n)) and O (n2) on OneMax and LeadingOnes, respectively. We thus normalise

the y-axis of Figures 7.2 (a) and (b) by n ln(n) and n2, respectively. We also use the log-scaled

y-axis for Figures 7.2 (a) and 7.2 (b). The runtime of the 3-tournament EA with a mutation

rate χ/n = 1.09812/n and a population size c log(n) for a sufficiently large constant c on

Funnel is O (n2 log(n)) (Dang et al., 2021a). We thus normalise the y-axis of Figure 7.2 (c)

by n2 ln(n). Note that (1+1) EA, RLS, (µ, λ) EA, cGA, FastGA, (1 + (λ, λ)) GA, (µ, λ)

self-adaptive EA and SA-(1, λ) EA cannot achieve the optimum of the Funnel function

in 109 fitness evaluations. It is known that non-elitist black-box algorithm can optimise

Funnel in polynomial time with high probability (Dang et al., 2021a,b).

Although the MOSA-EA is slower than EDAs and elitist EAs on the unimodal functions

234

7.4. Results and Discussion

OneMax and LeadingOnes, it has comparable performance with the other non-elitist

EAs and the (µ, λ) self-adaptive EA. Recall theoretical results on Funnel (Dang et al.,

2021a,b), elitist EAs and the (µ, λ) EA fail to find the optimum, while the 3-tournament EA

is efficient. The results in Figure 7.2 (c) are consistent with the theoretical results. In this

chapter, the (µ, λ) EA, the (µ, λ) self-adaptive EA and the MOSA-EA use the (µ, λ) selection.

Compared with the (µ, λ) EA and the (µ, λ) self-adaptive EA, self-adaptation via multi-

objectivisation can cope with sparse local optima and even achieve a better performance

than the 3-tournament EA.

100 110 120 130 140 150 160 170 180 190 200

Problem size n

100

102

104

106

R
u
n
ti

m
e

=
(n

ln
(n

))

(a)

MOSA-EA
SA-EA
3-tour. EA
(1 + 1) EA

UMDA
(7;6) EA
cGA
FastGA

RLS
(1 + (6;6)) GA
SA-(1;6) EA

100 110 120 130 140 150 160 170 180 190 200

Problem size n

100

102

104

R
u
n
ti

m
e

=n
2

(b)

MOSA-EA
SA-EA
3-tour. EA
(1 + 1) EA

UMDA
(7;6) EA
cGA
FastGA

RLS
(1 + (6;6)) GA
SA-(1;6) EA

100 110 120 130 140 150 160 170 180 190 200

Problem size n

200

400

600

800

1000

1200

R
u
n
ti

m
e

=
! n

2
ln

(n
)"

(c)

MOSA-EA

3-tour. EA

Figure 7.2: Runtimes of nine algorithms on the (a) OneMax, (b) LeadingOnes, (c)

Funnel (u = 0.5n, v = 0.6n,w = 0.7n) functions over 30 independent runs. The y-

axis in sub-figures (a) and (b) are log-scaled. (1+1) EA, RLS, (µ, λ) EA, cGA, FastGA,

(1 + (λ, λ)) GA, (µ, λ) self-adaptive EA and SA-(1, λ) EA cannot find the optimum of the

Funnel function in 109 fitness evaluations.

7.4.2 Complex Combinatorial Optimisation Problems

Random NK-Landscape Problems Figure 7.3 illustrates the experimental results of

eleven algorithms on random NK-Landscape problems. From Wilcoxon rank-sum tests,

the highest fitness values achieved by the MOSA-EA are statistically significantly higher

than all other algorithms with significance level α = 0.05 for all NK-Landscape with

k ∈ {10, 15, 20, 25}. Furthermore, the advantage of the MOSA-EA is more significant for

235

Chapter 7. Self-adaptation on Complex Combinatorial Optimisation Problems

the harder problem instances.

k = 5 k = 10 k = 15 k = 20 k = 25
50

60

70

80

90

100

F
it
n
es
s

Random Search

cGA

RLS

SA-(1;6) EA

UMDA

(1 + 1) EA

FastGA

(1 + (6;6)) GA

(7;6) EA

3-tournament EA

MOSA-EA

Figure 7.3: The highest fitness values found in the end of runs in 108 fitness evaluations on

100 random NK-Landscape instances with different k (n = 100).

Figure 7.4 illustrates the highest fitness values found during the optimisation process

on one random NK-Landscape instance (k = 20, n = 100). Note that the non-elitist

algorithms, i.e., EDAs, (µ, λ) EA, 3-tournament EA, SA-(1, λ) EA and MOSA-EA, do not

always keep the best solution found. Therefore, the corresponding lines might fluctuate. In

contrast, the elitist EAs, e.g., (1+1) EA, increase the fitness value monotonically during the

whole run.

The elitist EAs converge quickly to solutions of medium quality, then stagnate. In contrast,

the 3-tournament EAs, the (µ, λ) EA and the MOSA-EA improve the solution steadily. Most

noticeably, the MOSA-EA improves the solution even after 107 fitness evaluations.

Random Max-k-Sat Problems Figure 7.5 illustrates the medians of the smallest number

of unsatisfied clauses found in the 108 fitness evaluations budget among eleven algorithms on

100 random Max-k-Sat instances (k = 5, n = 100) with different total number of clauses

m. Coja-Oghlan (2014) proved that the probability of generating a satisfiable instance drops

from nearly 1 to nearly 0, if the ratio of the number of clauses m and the problem size n

is greater than a threshold, rk−Sat = 2k ln(2) − 1
2
(1 + ln(2)) + ok(1), where ok(1) signifies

a term that tends to 0 in the limit of large k. In this case, rk−Sat is roughly 2133 if we

ignore the ok(1) term. We therefore call an instance with m ≥ 2133 hard. The MOSA-EA is

236

7.4. Results and Discussion

Ta
bl

e
7.

2:
St

at
is

ti
ca

lr
es

ul
ts

of
ex

pe
ri

m
en

ts
on

ra
nd

om
N

K
-L

a
n
d
sc

a
pe

pr
ob

le
m

s.
T

he
p-

va
lu

es
of

ea
ch

al
go

ri
th

m
co

m
e

fr
om

W
ilc

ox
on

ra
nk

-s
um

te
st

s
be

tw
ee

n
th

e
al

go
ri

th
m

an
d

M
O

SA
-E

A
.

k
S
ta

t.
R

S
cG

A
U

M
D

A
R

L
S

S
A

-(
1,
λ
)E

A
(1

+
1)

E
A

Fa
st

G
A

(1
+
(λ
,λ

))
G

A
(µ
,λ

)E
A

3-
to

u
r.

E
A

M
O

S
A

-E
A

5
M

ed
ia

n
66

.6
59

1
72

.9
96

4
74

.8
63

1
71

.3
54

7
74

.8
41

8
76

.6
61

3
76

.9
23

0
79

.2
84

6
78

.2
08

9
79

.2
84

6
79

.2
84

6

p-
va

lu
e

2.
1e

-2
2

2.
3e

-0
4

0.
02

13
6.

5e
-0

8
0.

02
26

0.
26

68
0.

42
15

0.
92

99
0.

79
85

0.
88

05
-

10
M

ed
ia

n
66

.4
44

2
69

.5
49

9
73

.2
96

8
68

.3
10

0
71

.0
24

8
75

.5
79

2
76

.1
34

0
77

.1
52

0
79

.2
68

0
78

.7
83

2
82

.5
27

0

p-
va

lu
e

2.
6e

-3
4

1.
5e

-2
6

2.
0e

-1
5

2.
6e

-3
4

3.
5e

-3
4

5.
0e

-1
8

1.
1e

-1
2

2.
2e

-0
9

0.
00

30
0.

00
63

-

15
M

ed
ia

n
66

.2
05

5
66

.5
51

7
70

.9
57

6
66

.4
44

6
67

.8
96

8
73

.7
25

3
74

.2
25

3
74

.6
40

7
76

.0
77

7
76

.9
05

3
80

.4
41

7

p-
va

lu
e

2.
6e

-3
4

2.
6e

-3
4

5.
5e

-2
2

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

1.
8e

-3
3

5.
2e

-3
3

1.
3e

-2
0

1.
1e

-1
7

-

20
M

ed
ia

n
66

.1
23

3
64

.4
19

1
69

.6
78

6
64

.9
86

5
66

.0
53

3
72

.8
02

5
72

.8
78

3
73

.0
88

2
74

.2
58

0
75

.3
66

2
78

.5
24

7

p-
va

lu
e

2.
6e

-3
4

2.
6e

-3
4

7.
0e

-3
1

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

4.
0e

-3
3

1.
2e

-3
1

-

25
M

ed
ia

n
66

.2
20

7
63

.1
22

2
68

.5
68

3
64

.3
68

5
65

.1
88

6
70

.8
64

8
71

.7
56

4
71

.9
62

3
73

.4
39

8
74

.8
11

5
77

.5
02

4

p-
va

lu
e

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

2.
6e

-3
4

1.
4e

-3
3

-

237

Chapter 7. Self-adaptation on Complex Combinatorial Optimisation Problems

105 106 107 108

Number of Fitness Evaluations

50

60

70

80
F

it
n

es
s

MOSA-EA
cGA
3-tour. EA

(1 + 1) EA
RLS
Random Search

UMDA
(7;6) EA
(1 + (6;6)) GA

FastGA
SA-(1;6) EA

Figure 7.4: The median of the highest fitness values found in every 2×104 fitness evaluations

over 30 independent runs on one random NK-Landscape instance (k = 20, n = 100). The

x-axis is log-scaled.

statistically significantly better than the other ten algorithms with significance level α = 0.05

on hard instances from Wilcoxon rank-sum tests.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

Total Number of Clauses m

0

10

20

N
u
m

b
er

of
U
n
sa

ti
s-

ed
C
la

u
se

s

3-tournament EA

(1 + 1) EA

Random Search

UMDA

(1 + (6;6)) GA

(7;6) EA

cGA

FastGA

RLS

SA-(1;6) EA

MOSA-EA

Figure 7.5: The medians of the smallest number of unsatisfied clauses found in 108 fitness

evaluations on 100 random Max-k-Sat instances with different total numbers of clauses m

(k = 5, n = 100).

Figure 7.6 illustrates the smallest number of unsatisfied clauses of the best solution found

during the optimisation process on one random Max-k-Sat instance (k = 5, n = 100,

m = 2500). From Figure 7.6, we come to similar conclusions with the experiments on

NK-Landscape (Figure 7.4).

Figure 7.8 illustrates the medians of the smallest number of unsatisfied clauses found in

one hour CPU-time budget of Open-WBO and the MOSA-EA on 100 random Max-k-Sat

238

7.4. Results and Discussion

105 106 107 108

Number of Fitness Evaluations

101

102

N
u
m

b
er

of
U

n
sa

ti
s-

ed
C

la
u
se

s MOSA-EA
cGA
3-tour. EA

(1 + 1) EA
RLS
Random Search

UMDA
(7;6) EA
(1 + (6;6)) GA

FastGA
SA-(1;6) EA

Figure 7.6: Minimum number of unsatisfied clauses over 2× 104 fitness evaluations over 30

independent runs on one random Max-k-Sat instance (k = 5, n = 100, m = 2500). The

axis are log-scaled.

1
00

2
00

3
00

4
00

5
00

6
00

7
00

8
00

9
00

1
0
00

1
1
00

1
2
00

1
3
00

1
4
00

1
5
00

1
6
00

1
7
00

1
8
00

1
9
00

2
0
00

2
1
00

2
2
00

2
3
00

2
4
00

2
5
00

2
6
00

2
7
00

2
8
00

2
9
00

3
0
00

Total Number of Clauses m

10!40

10!30

10!20

10!10
0.05

p
-v
al
u
e

3-tournament EA

(1 + 1) EA

Random Search

UMDA

(1 + (6;6)) GA

(7;6) EA

cGA

FastGA

RLS

SA-(1;6) EA

Figure 7.7: The p-values of Wilcoxon rank-sum tests between the algorithms and the MOSA-

EA on 100 random Max-k-Sat instances. The y-axis is log-scaled.

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Total Number of Clauses m

0

20

40

60

N
u
m
b
er
o
f

U
n
sa
ti
s-
ed

C
la
u
se
s

MOSA-EA

Open-WBO

Figure 7.8: Minimum number of unsatisfied clauses found in one hour CPU-time on 100

random Max-k-Sat instances with different total number of clauses m (k = 5, n = 100).

instances (k = 5, n = 200) with different total number of clauses m. On instances with few

clauses (m ≤ 1900), Open-WBO returns an optimal solution within a few minutes, while

the MOSA-EA takes up to one hour to find an optimal solution. However, the performance

239

Chapter 7. Self-adaptation on Complex Combinatorial Optimisation Problems

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Total Number of Clauses m

10!40

10!30

10!20

10!10
0.05

p
-v
a
lu
e

Open-WBO

Figure 7.9: The p-value of Wilcoxon rank-sum test between Open-WBO and the MOSA-EA

on 100 random Max-k-Sat instances. The y-axis is log-scaled.

of the MOSA-EA is statistically significantly better than Open-WBO on hard instances in

one hour of CPU time.

7.5 Conclusion

EAs applied to optimisation problems can benefit from non-elitism. However, it is non-

trivial to set the parameters of non-elitist EAs appropriately. Self-adaptation via multi-

objectivisation, a parameter control method, is proved to be efficient in escaping local op-

tima with unknown sparsity (in Chapter 6). This chapter continues the study of MOSA-EA

through an empirical study of its performance on several combinatorial optimisation prob-

lems. We first empirically study the MOSA-EA on theoretical benchmark problems. The

performance of the MOSA-EA is comparable with other non-elitist EAs on unimodal func-

tions, i.e., OneMax and LeadingOnes. Self-adaption via multi-objectivisation can also

help to cope with sparse local optima. For the NP-hard combinatorial optimisation prob-

lems, random NK-Landscape and Max-k-Sat, the MOSA-EA is significantly better than

the other nine heuristic algorithms. In particular, the MOSA-EA can beat a state-of-the-art

MaxSat solver on some hard random Max-k-Sat instances in a fixed CPU time. In conclu-

sion, the MOSA-EA outperforms a range of optimisation algorithms on several benchmarking

function and complex combinatorial optimisation problems.

240

7.5. Conclusion

241

242

Chapter Eight

Conclusion

243

Chapter 8. Conclusion

8.1 Summary

EAs are effective solvers for a variety of discrete black-box optimisation problems. However,

their performance heavily relies on the proper setting of algorithm parameters, such as

mutation rate, which are often problem- and instance-specific. One promising approach to

help configure parameters is self-adaptive parameter control, where both parameters and

solutions are encoded in individuals and evolved through variation operators. Although

there have been some theoretical studies demonstrating the efficiency of self-adaptive EAs

on the unknown-structure function, the potential benefits of this approach in other scenarios

remain unknown. Moreover, there exists much room for creativity in designing self-adaptive

EAs. In this thesis, we have provided significant insights into the self-adaptive parameter

control mechanism in EAs, utilising mathematical proofs and empirical analysis.

First, we explored the benefits of self-adaptive parameter control mechanisms for EAs in

noisy optimisation. Ideally, we aimed to demonstrate that self-adaptation can identify the

“right” parameter settings in noisy optimisation. However, although existing studies empha-

sise the significance of “right” parameter settings for static EAs in successful noisy optimisa-

tion, the exact relationship between parameter settings and noise was unclear. To begin, we

conducted a theoretical analysis of the runtime of static non-elitist EAs using two popular

selection mechanisms: 2-tournament and (µ, λ) selections, in various uncertain settings. For

the 2-tournament EA, we derived a general theorem via the level-based theorem, which pro-

vided an upper bound of the expected runtime in uncertain environments. This theorem is

then applied to obtain upper bounds of runtimes on OneMax and LeadingOnes in several

noise models, including one-bit, bit-wise, Gaussian, and symmetric noise models. In noisy

settings, our analysis is more comprehensive and precise compared to the previous study of

static non-elitist EAs (Dang and Lehre, 2015). We offer more precise guidance on selecting

the mutation rate and population size based on the level of uncertainty. Overall, in multi-

244

8.1. Summary

ple noisy settings, we demonstrated that non-elitist EAs surpass the current state-of-the-art

results (refer to Tables 2.3-2.10). Specifically, in scenarios optimising the LeadingOnes

function in the symmetric noise model, we revealed that a low selective pressure, i.e., a low

reproductive rate, and an excessively high mutation rate relative to the noise level, lead to

inefficient optimisation, i.e., exponential runtime. This points out the importance of ap-

propriately setting the mutation rate in accordance with the noise level for efficient noisy

optimisation and motivates self-adapting the mutation rate in EAs. As another application

of the general theorem is that non-elitist EAs optimise the DBV problem within polynomial

expected time.

Building on the results of static non-elitist EAs under noise, we conducted, for the first

time, a rigorous theoretical analysis of self-adaptive EAs in noisy environments. A detailed

runtime analysis of the LeadingOnes function indicates that the 2-tournament EA with

self-adaptation from high/low mutation rates guarantees the lowest runtime among fixed

high/low mutation rates and a mutation rate uniformly chosen from high/low rates, re-

gardless of the presence of symmetric noise. These results are summarised in Table 4.1.

Additionally, we expanded our study to include other types of noise, such as one-bit and bit-

wise noise, and examine additional self-adaptive EAs. Both theoretical and empirical results

demonstrate that self-adaptive EAs can effectively adjust to noise levels and outperform

static EAs in considered noisy settings. Recalling Research Question 1 about the efficiency

of self-adaptation in noisy optimisation, our response is that self-adaptive parameter control

mechanisms can help configure the parameter setting in EAs according to the noise level.

Subsequently, encouraged by the positive results for noisy optimisation, we asked whether

self-adaptation could also be helpful in another form of uncertain optimisation, namely dy-

namic optimisation (Research Question 2). Our focus is on a problem of tracking dynamic

optima with changing structure, specifically the DSM problem, that require adjustable mu-

tation rates. We showed that the EAs with any fixed mutation rate fails to track with

245

Chapter 8. Conclusion

overwhelmingly high probability. In contrast, our theoretical analysis indicates that the

(µ, λ) self-adaptive EA can successfully track every optimum in the DSM problem and find

the final optimum with an overwhelmingly high probability. In this analysis, to assess the

efficacy of the self-adaptive EA in tracking dynamic optima, it is crucial to establish a lower

bound for the probability of achieving the current optimum within the specified evaluation

budget. Thus, another significant contribution of this work is the level-based theorem with

tail bounds (Theorem 5.3.1). In contrast, previous level-based theorems only provide the

upper bound of expected runtime. Based on this analysis, we responded to Research Ques-

tion 2 by concluding that self-adaptive parameter control mechanisms can adjust parameter

settings in dynamic optimisation.

Now, we have demonstrated the benefits of existing self-adaptive EAs in uncertain envi-

ronments. To enhance the performance of self-adaptive EAs on multi-modal landscapes, we

proposed a novel self-adaptive EA, named MOSA-EA, that is designed for single-objective

optimisation. It addresses parameter control from a multi-objective optimisation perspec-

tive, with the goal of simultaneously maximising fitness and mutation rates. A new bi-

modal function, termed PeakedLOm,k, is presented to illustrate the potential benefits of

the MOSA-EA. This function is characterised by its adjustable sparsity of local optima. Such

sparse local optima can trap elitist EAs. For static non-elitist EAs, it is curial to carefully

set the mutation rate according to the sparsity. The runtime analyses show that the MOSA-

EA efficiently escapes local optima with unknown sparsity, while elitist EAs, the (µ, λ) EA,

and the 2-tournament EA can fail. Table 6.1 demonstrates the theoretical results obtained

in this study. An empirical study focusing on complex combinatorial optimisation prob-

lems further demonstrates that the MOSA-EA increasingly outperforms other algorithms on

more challenging random NK-Landscape and random Max-k-Sat instances. Precisely,

the MOSA-EA can find better solutions (higher fitness) for the given evaluation budget. No-

tably, the MOSA-EA surpasses a problem-specific MaxSat solver, Open-WBO, on several

246

8.2. Future Work

random Max-k-Sat instances in term of the quality of found solution in the given CPU-time

budget. Hence, we responded affirmatively to Research Questions 3 and 4 (self-adaptive EAs

in escaping local optima and solving complex combinatorial optimisation problems). Accord-

ing to our research, self-adaptation can efficiently escape a particular type of local optima

and contribute significantly on the complex combinatorial optimisation problems.

To summarise, this thesis has provided a comprehensive exploration of self-adaptive pa-

rameter control in EAs, shedding light on its advantages and potential applications. Through

a combination of comprehensive theoretical proofs, supplemented by empirical analysis, we

have demonstrated that self-adaptation of mutation rate can significantly enhance the per-

formance of EAs, notably in noisy and dynamic environments, and also can aid in effectively

escaping local optima.

8.2 Future Work

To understand the potential of self-adaptation in EAs, further investigation and clarifica-

tion are necessary. Potential future research could encompass both theoretical and empirical

analysis on self-adaptive EAs to a more diverse range of benchmarking functions and sce-

narios.

In the present study, Chapter 3 reports one negative result in noisy optimisation, which

identifies a mutation rate that fails optimisation under noise, exclusively for static non-

elitist EAs in optimising LeadingOnes under a symmetric noise model. For a more com-

prehensive understanding, additional investigations into the optimisation of OneMax and

LeadingOnes under varied noise models, such as one-bit and bit-wise noise models, are rec-

ommended. Such exploration could yield fresh insights into the performance of self-adaptive

EAs under other more realistic noise models.

247

Chapter 8. Conclusion

Referring to Chapter 4, our theoretical analysis primarily focused on an EA with two

self-adapting mutation rates for noisy optimisation. To gain a more rounded understanding,

we suggest future research to delve into the performance of other self-adaptive EAs. One

algorithm worth considering is the (µ, λ) self-adaptive EA, as proposed by Case and Lehre

(2020) and examined in dynamic optimisation (see Chapter 5). Given the multitude of

mutation rates involved in this algorithm, we think that it exhibits greater robustness to

noise, though posing increased analytical difficulty.

Lastly, extending the use of self-adaptive parameter control mechanisms to other parame-

ters, such as crossover rates, population sizes, and selection parameters, presents a significant

research opportunity. As noted in Section 2.3.2, numerous empirical studies have demon-

strated the advantages of self-adaptation of parameters beyond just the mutation rate for

EAs. However, the understanding, especially from a theoretical perspective, is still lacking.

In conclusion, while substantial progress has been made, there remains a plethora of un-

tapped research opportunities within the field of self-adaptation in EA. Future work can seek

to address these unexplored areas to facilitate an even more comprehensive understanding

of this fascinating area.

248

8.2. Future Work

249

250

Appendix One

Supplemental Materials

A.1 Definitions

Definition A.1.1 (Asymptotic notations (Cormen et al., 2001)). For any two functions

f, g : N0 → R, we define:

• f(n) = O(g(n)) if and only if there exist constants c > 0 and n0 such that 0 ≤ f(n) ≤

cg(n) for all n ≥ n0.

• f(n) = Ω(g(n)) if and only if g(n) = O(f(n)).

• f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = o(g(n)) if and only if limn→∞
f(n)
g(n)

= 0.

• f(n) = ω(g(n)) if and only if g(n) = o(f(n)).

Definition A.1.2 (Funnel function (Dang et al., 2021a)). Given a bistring x ∈ {0, 1}n for

251

Supplemental Materials

all n ∈ N, 0 ≤ u ≤ v ≤ w ≤ n and u, v, w ∈ N0 then

Funnel(x) :=



LO(x) if w < LO(x) ≤ n (D)

LO(x) + u− v if v < LO(x) ≤ w (C)

LO(x) + w − v if u < LO(x) ≤ v and LO(x) = OM(x) (B)

−n if u < LO(x) ≤ v and LO(x) < OM(x) (B′)

LO(x) if OM(x) ≤ u (A)

−OM(x) otherwise (A′)

(A.1)

where the OneMax function OM(x) and the LeadingOnes function LO(x) are defined in

Definitions 2.2.7 and 2.2.6, respectively.

A.2 Useful Inequalities and Lemmas

Lemma A.2.1. For any θ ∈ (0, 1/2] and any constant ζ ∈ (0, 1), θζ < ln(1 + 2θζ).

Proof. By 2x
2+x
≤ ln(1 + x) from Eq. (3) in (Topsoe, 2007), we obtain

ln(1 + 2θζ) ≥ 4θζ

2 + 2θζ
=

2θζ

1 + θζ
>

2θζ

2
= θζ.

Lemma A.2.2. For all b ∈ (0, 1) and x > 0, 1− b 1
x ≤ − ln(b)

x
.

Proof. Let f(x) := 1 − b
1
x + ln(b)

x
. For all b ∈ (0, 1) and x > 0, we know that f(x) is a

monotone increasing function by its derivative f ′(x) =
(
b

1
x − 1

)
ln(b)
x2

> 0. Thus, f(x) ≤

lim
x→∞

f(x) = lim
x→∞

(
1− b 1

x + ln(b)
x

)
= 0.

Lemma A.2.3. For all −1 < x < 0, 1 + 1
x
< 1

ln(1+x)
.

252

A.2. Useful Inequalities and Lemmas

Proof. This follows directly from the well-known inequality x
x+1

< ln(1+ x), which holds for

all −1 < x < 0.

Lemma A.2.4. ln(1 + x) <
√
x for 0 ≤ x <∞.

Proof. By Eq. (14) in (Topsoe, 2007),

ln(1 + x) ≤ x√
1 + x

<
x√
x
=
√
x.

Lemma A.2.5 ((Niculescu and Vernescu, 2004)).
(
1 + x

n

)n ≥ ex
(
1− x2

n

)
for n ∈ N,|x| ≤ n.

Lemma A.2.6.
(
(1− x)1/x−1

)y
≥ e−y for 0 < x < 1 and y > 0.

Proof. By Lemma A.2.5,

(1− x)1/x ≥ e−1 (1− x) (A.2)

=⇒ (1− x)1/x−1 ≥ e−1 (A.3)

=⇒
(
(1− x)1/x−1

)y
≥ e−y (A.4)

Lemma A.2.7 ((Case and Lehre, 2020)). For all c ∈ (0, 1) and j ≥ 1, 1− c1/j ≥ (1− c)/j.

Lemma A.2.8.
(
1− χ

n

)i ≥ e−χ (1− o(1)) for 0 < χ = O(1), n ∈ N and 0 ≤ i ≤ n.

Proof. (
1− χ

n

)i
≥
(
1− χ

n

)n
by Lemma A.2.5,

≥ e−χ
(
1− χ2

n

)
= e−χ (1− o(1))

253

Supplemental Materials

Lemma A.2.9 ((Dang and Lehre, 2015)). Let F (x) be the cumulative density function of

the normal distribution N (0, σ2) for σ > 0 and x > 0. we have

F (x) > 1− 1√
xπ
σ
√
2
+ 4

Lemma A.2.10 ((Dang and Lehre, 2016a)). Let X and Y be identically distributed inde-

pendent random variables with integer support, finite expected value µ and finite non-zero

variance σ2, it holds that

Pr(X = Y) ≥ (1− 1/d2)
2

2dσ + 1
for any d ≥ 1

Lemma A.2.11. If q ∈ [0, 1/2) and ψ ∈ [ψ0, 1] where ψ0 ∈ (0, 1), then

1. g(ψ) := ψ (2 (1− q)− (1− 2q)ψ) is monotone increasing.

2. 90(9− 6q + 12q2 − 8q3) < 810.

3. 1
10

+ 491q
270
− 728q2

135
+ 1108q3

405
− 8q4

135
+ 8q5

405
≥ − q

5
+ 1

10
.

4. 3− 5q > 1
2
.

Proof.

1. To prove that g(ψ) is a monotone increasing function, we need to show that g′(ψ) > 0

for all ψ ∈ [ψ0, 1]. The derivative of g(ψ) is g′(ψ) = 2 (1− q) − 2 (1− 2q)ψ. Since

q ∈ [0, 1/2) and ψ0 ∈ (0, 1), we have 2 (1− q)− 2 (1− 2q)ψ0 > 2((1− q)− (1− 2q)) =

2q ≥ 0. Therefore, g′(ψ) > 0 for all ψ ∈ [ψ0, 1], which means g(ψ) is monotone

increasing.

2. We know 90(9−6q+12q2−8q3) = 810−90(6q−12q2+8q3) = 810−90(1−(1−2q)3). Since

q ∈ [0, 1/2), we know that 0 ≤ 1−(1−2q)3 < 1 Therefore, 810−90(1−(1−2q)3) < 810,

which means 90(9− 6q + 12q2 − 8q3) < 810.

3. The inequality is proved by a non-negative function 109q
54
− 728q2

135
+ 1108q3

405
− 8q4

135
+ 8q5

405
≥ 0

for all q ∈ [0, 1/2).

254

A.3. Useful Theorem

4. Since 3− 5q > 1/2 for all q ∈ [0, 1/2), we know that 3− 5q > 1
2
.

Lemma A.2.12 is an adaptation of Lemma 4 in (Case and Lehre, 2020), but with some

irrelevant items removed from the original. It applies to the values of θ2, η, and θ1 as defined

in Eq.(5.9)-(5.11).

Lemma A.2.12. Let A > 1, b < 1, and pinc ∈ (0, 1) be constants satisfying the constraints

in Lemma 5.4.1. Then there exists a constant δ ∈ (0, 1/10) such that for all j ∈ [n] and

χ/n ∈ [ϵ, 1/2],

(1) θ2(j) = Ω(1/j),

(2) θ1(j) = O(1/j),

(3) Aη(j) ≤ θ2(j),

(4) bη(j) ≥ θ1(j),

(5) bθ2(j) < θ2(j + 1),

(6) Aθ1(j) ≤ θ2(j + 1),

(7) if χ
n
≤ η(j), then (1− Aχ/n)j ≥ 1+δ

α0pinc
,

(8) if χ
n
≤ θ2(j), then (1− bχ/n)j ≥ 1+δ

α0(1−pinc) .

A.3 Useful Theorem

Theorem A.3.1 (Theorem 2 in (Dang and Lehre, 2016b)). For any x∗ ∈ {0, 1}n, define

T := min{t | x∗ ∈ Pt}, where Pt is the population of the 2-tournament EA at time t ∈ N. Let

It(j) denote the j-th sampled index in generation t. Let Rt(i) :=
∑λ

j=1[It(j) = i] for i ∈ [λ].

Assume that mutation rate χ/n is sampled from the set M = {χ1/n, χ2/2, . . . , χm/n} with

probabilities P = {p1, p2, . . . , pm} one-to-one, every time an individual is mutated. If there

exist constant α0, c, c
′′, δ > 0 such that with probability 1− e−Ω(n),

255

Supplemental Materials

1. the initial population satisfies H(P0, x
∗) ≥ c′n;

2. for t ≤ ecn, i ∈ [λ], if H(P0, x
∗) ≤ c′n, then E [Rt(i) | Pt] ≤ α0,

3.
∑m

j=1 pje
−χj ≤ (1− δ)/α0, and max{M} ≤ χmax/n for a constant χmax,

then Pr
(
T ≤ ec

′′n
)
= e−Ω(n) for a constant c′′ > 0.

A.4 Statistical Results of Experiments

Tables A.1-A.20 show statistical results of experiments (Figures 4.3-4.11).

256

A.4. Statistical Results of Experiments

Table A.1: Statistical results of experiments LeadingOnes without noise. The p-values of

each algorithm come from Wilcoxon rank-sum tests between the algorithm and 2-tournament

EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 307948 684124 326388 283054

p-value (to SA-2mr) 0.0008 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

110

Median 361344 866661 372636 336878

p-value (to SA-2mr) 0.0155 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

120

Median 420562 1084456 419604 388948

p-value (to SA-2mr) 0.9649 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

130

Median 480182 1263278 483104 448040

p-value (to SA-2mr) 0.9182 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 530104 1539873 539994 508346

p-value (to SA-2mr) 0.3375 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

150

Median 593776 1882631 613836 548641

p-value (to SA-2mr) 0.2122 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

160

Median 665480 2089912 658368 620776

p-value (to SA-2mr) 0.9183 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

170

Median 736048 2638876 749412 670256

p-value (to SA-2mr) 0.3418 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 800030 2942448 814576 739768

p-value (to SA-2mr) 0.4172 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

190

Median 869400 3369450 886200 807450

p-value (to SA-2mr) 0.5252 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

200

Median 947640 3873240 945520 877680

p-value (to SA-2mr) 0.7947 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

257

Supplemental Materials

Table A.2: Statistical results of experiments LeadingOnes under symmetric noise with

noise level q = 0.1. The p-values of each algorithm come from Wilcoxon rank-sum tests

between the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 361424 798452 380786 354970

p-value (to SA-2mr) 0.0093 0.0000 - 0.0000

p-value (to SA) 0.0647 0.0000 0.0000 -

110

Median 441329 990873 436624 419686

p-value (to SA-2mr) 0.9591 0.0000 - 0.0005

p-value (to SA) 0.0007 0.0000 0.0005 -

120

Median 499118 1208038 520194 477084

p-value (to SA-2mr) 0.0302 0.0000 - 0.0000

p-value (to SA) 0.0048 0.0000 0.0000 -

130

Median 561024 1513596 583426 538622

p-value (to SA-2mr) 0.0032 0.0000 - 0.0000

p-value (to SA) 0.0105 0.0000 0.0000 -

140

Median 625048 1766354 662630 607246

p-value (to SA-2mr) 0.0031 0.0000 - 0.0000

p-value (to SA) 0.0301 0.0000 0.0000 -

150

Median 729181 2107303 740214 682040

p-value (to SA-2mr) 0.1103 0.0000 - 0.0000

p-value (to SA) 0.0001 0.0000 0.0000 -

160

Median 814832 2438400 817880 732536

p-value (to SA-2mr) 0.4854 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

170

Median 886136 2884568 908752 838848

p-value (to SA-2mr) 0.0203 0.0000 - 0.0000

p-value (to SA) 0.0001 0.0000 0.0000 -

180

Median 970426 3425583 974582 912242

p-value (to SA-2mr) 0.9903 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

190

Median 1040550 3891300 1051050 995400

p-value (to SA-2mr) 0.1202 0.0000 - 0.0000

p-value (to SA) 0.0003 0.0000 0.0000 -

200

Median 1153280 4403240 1167060 1066360

p-value (to SA-2mr) 0.4480 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

258

A.4. Statistical Results of Experiments

Table A.3: Statistical results of experiments LeadingOnes under symmetric noise with

noise level q = 0.2. The p-values of each algorithm come from Wilcoxon rank-sum tests

between the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 2009960 950582 493270 463766

p-value (to SA-2mr) 0.0000 0.0000 - 0.0002

p-value (to SA) 0.0000 0.0000 0.0002 -

110

Median 3126943 1239297 569305 545780

p-value (to SA-2mr) 0.0000 0.0000 - 0.0601

p-value (to SA) 0.0000 0.0000 0.0601 -

120

Median 4400094 1487774 660062 638986

p-value (to SA-2mr) 0.0000 0.0000 - 0.0376

p-value (to SA) 0.0000 0.0000 0.0376 -

130

Median 5707640 1821380 775304 729526

p-value (to SA-2mr) 0.0000 0.0000 - 0.0044

p-value (to SA) 0.0000 0.0000 0.0044 -

140

Median 12454477 2234151 870320 806035

p-value (to SA-2mr) 0.0000 0.0000 - 0.0001

p-value (to SA) 0.0000 0.0000 0.0001 -

150

Median - 2574701 956862 894676

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

160

Median - 2958592 1067816 1009904

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

170

Median - 3472584 1148276 1108184

p-value (to SA-2mr) - 0.0000 - 0.0048

p-value (to SA) - 0.0000 0.0048 -

180

Median - 4041710 1272775 1228098

p-value (to SA-2mr) - 0.0000 - 0.0031

p-value (to SA) - 0.0000 0.0031 -

190

Median - 4719750 1407000 1326150

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

200

Median - 5454760 1516860 1444780

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

259

Supplemental Materials

Table A.4: Statistical results of experiments LeadingOnes under symmetric noise with

noise level q = 0.3. The p-values of each algorithm come from Wilcoxon rank-sum tests

between the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median - 1349808 774480 709940

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

110

Median - 1650514 923121 845018

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

120

Median - 2042456 1065296 966622

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

130

Median - 2471038 1203864 1112308

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

140

Median - 2857221 1409325 1256030

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

150

Median - 3503479 1560668 1396176

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

160

Median - 4056888 1798320 1559560

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

170

Median - 4792536 1954228 1723956

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

180

Median - 5582547 2145535 1867083

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

190

Median - 6087900 2387700 2071650

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

200

Median - 7126380 2540820 2256740

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

260

A.4. Statistical Results of Experiments

Table A.5: Statistical results of experiments OneMax without noise. The p-values of each

algorithm come from Wilcoxon rank-sum tests between the algorithm and 2-tournament EAs

with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 110640 200996 112484 104186

p-value (to SA-2mr) 0.0410 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 172086 356040 177031 160218

p-value (to SA-2mr) 0.0001 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 238970 536124 241048 218190

p-value (to SA-2mr) 0.0088 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

220

Median 308594 740194 308594 276224

p-value (to SA-2mr) 0.2689 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

260

Median 385098 976101 387324 339465

p-value (to SA-2mr) 0.0148 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

300

Median 454118 1239126 460964 401632

p-value (to SA-2mr) 0.0011 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

340

Median 530530 1527460 534028 468732

p-value (to SA-2mr) 0.1340 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

380

Median 608768 1834627 614713 532672

p-value (to SA-2mr) 0.0011 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

420

Median 686712 2154438 695175 599664

p-value (to SA-2mr) 0.0013 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

460

Median 768102 2517804 773010 669942

p-value (to SA-2mr) 0.1209 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

500

Median 847726 2930994 857670 734613

p-value (to SA-2mr) 0.0006 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

261

Supplemental Materials

Table A.6: Statistical results of experiments OneMax under symmetric noise with noise

level q = 0.2. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 129080 234188 132768 125392

p-value (to SA-2mr) 0.0094 0.0000 - 0.0000

p-value (to SA) 0.0001 0.0000 0.0000 -

140

Median 203734 413402 207690 191866

p-value (to SA-2mr) 0.0006 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 280530 625478 284686 265984

p-value (to SA-2mr) 0.0759 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

220

Median 364702 864279 369018 338806

p-value (to SA-2mr) 0.0053 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

260

Median 450765 1149729 454104 416262

p-value (to SA-2mr) 0.0376 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

300

Median 538552 1451352 546539 490630

p-value (to SA-2mr) 0.0021 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

340

Median 627308 1768822 631972 571340

p-value (to SA-2mr) 0.0350 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

380

Median 718156 2109286 726479 653950

p-value (to SA-2mr) 0.0089 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

420

Median 812448 2508675 819702 735072

p-value (to SA-2mr) 0.0404 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

460

Median 910434 2914125 916569 817182

p-value (to SA-2mr) 0.0470 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

500

Median 1003101 3393390 1016774 904904

p-value (to SA-2mr) 0.0047 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

262

A.4. Statistical Results of Experiments

Table A.7: Statistical results of experiments OneMax under symmetric noise with noise

level q = 0.3. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 165960 286742 167804 164116

p-value (to SA-2mr) 0.2665 0.0000 - 0.0027

p-value (to SA) 0.0325 0.0000 0.0027 -

140

Median 259118 507357 262085 252195

p-value (to SA-2mr) 0.1670 0.0000 - 0.0000

p-value (to SA) 0.0032 0.0000 0.0000 -

180

Median 361572 760548 359494 344948

p-value (to SA-2mr) 0.6812 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

220

Median 463970 1066052 474760 441311

p-value (to SA-2mr) 0.0007 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

260

Median 572082 1395702 579873 542031

p-value (to SA-2mr) 0.0465 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

300

Median 685741 1754858 689164 641242

p-value (to SA-2mr) 0.0475 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

340

Median 804540 2144274 808038 753236

p-value (to SA-2mr) 0.5338 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

380

Median 916719 2601532 929798 860836

p-value (to SA-2mr) 0.0049 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

420

Median 1034904 3051516 1046994 963573

p-value (to SA-2mr) 0.0625 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

460

Median 1160742 3542349 1170558 1072398

p-value (to SA-2mr) 0.0298 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

500

Median 1272832 4074554 1287748 1193280

p-value (to SA-2mr) 0.0049 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

263

Supplemental Materials

Table A.8: Statistical results of experiments OneMax under symmetric noise with noise

level q = 0.4. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 8159700 663840 687812 484972

p-value (to SA-2mr) 0.0000 0.0531 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median - 1150207 1146251 749662

p-value (to SA-2mr) - 0.4214 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

180

Median - 1738247 1757988 1056663

p-value (to SA-2mr) - 0.7013 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

220

Median - 2423434 2392143 1351987

p-value (to SA-2mr) - 0.9105 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

260

Median - 3178728 3084123 1637223

p-value (to SA-2mr) - 0.2991 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

300

Median - 3974103 3772146 1964802

p-value (to SA-2mr) - 0.0047 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

340

Median - 4934512 4805086 2286526

p-value (to SA-2mr) - 0.2595 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

380

Median - 5933110 5839179 2645525

p-value (to SA-2mr) - 0.2878 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

420

Median - 6925152 7006155 2951169

p-value (to SA-2mr) - 0.4613 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

460

Median - 8200041 8006175 3246642

p-value (to SA-2mr) - 0.4756 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

500

Median - 9242948 9702858 3670579

p-value (to SA-2mr) - 0.0186 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

264

A.4. Statistical Results of Experiments

Table A.9: Statistical results of experiments LeadingOnes under one-bit noise with noise

level q = 0.4. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 467454 1003136 484972 466532

p-value (to SA-2mr) 0.3332 0.0000 - 0.0847

p-value (to SA) 0.4443 0.0000 0.0847 -

110

Median 554249 1214831 568364 554249

p-value (to SA-2mr) 0.3784 0.0000 - 0.1210

p-value (to SA) 0.5951 0.0000 0.1210 -

120

Median 643776 1484900 647608 629406

p-value (to SA-2mr) 0.3326 0.0000 - 0.0173

p-value (to SA) 0.1611 0.0000 0.0173 -

130

Median 722708 1826250 749980 717838

p-value (to SA-2mr) 0.0060 0.0000 - 0.0010

p-value (to SA) 0.4006 0.0000 0.0010 -

140

Median 810980 2164921 851529 804057

p-value (to SA-2mr) 0.0058 0.0000 - 0.0002

p-value (to SA) 0.4915 0.0000 0.0002 -

150

Median 942820 2641902 950844 892670

p-value (to SA-2mr) 0.9455 0.0000 - 0.0018

p-value (to SA) 0.0007 0.0000 0.0018 -

160

Median 1041400 3039872 1041400 1000760

p-value (to SA-2mr) 0.6147 0.0000 - 0.0058

p-value (to SA) 0.0016 0.0000 0.0058 -

170

Median 1128744 3562020 1142108 1095848

p-value (to SA-2mr) 0.1991 0.0000 - 0.0034

p-value (to SA) 0.1090 0.0000 0.0034 -

180

Median 1249917 4144571 1267580 1222903

p-value (to SA-2mr) 0.8013 0.0000 - 0.0418

p-value (to SA) 0.0584 0.0000 0.0418 -

190

Median 1379700 4717650 1397550 1317750

p-value (to SA-2mr) 0.1487 0.0000 - 0.0000

p-value (to SA) 0.0003 0.0000 0.0000 -

200

Median 1457500 5371020 1502020 1429940

p-value (to SA-2mr) 0.0474 0.0000 - 0.0005

p-value (to SA) 0.1128 0.0000 0.0005 -

265

Supplemental Materials

Table A.10: Statistical results of experiments LeadingOnes under one-bit noise with noise

level q = 0.6. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 687812 1294488 813204 725614

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0247 0.0000 0.0000 -

110

Median 816788 1623225 1036041 862897

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0143 0.0000 0.0000 -

120

Median 946504 2067364 1184088 950336

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.6285 0.0000 0.0000 -

130

Median 1135684 2468116 1429832 1099646

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.4621 0.0000 0.0000 -

140

Median 1295590 2896781 1669432 1274821

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.9134 0.0000 0.0000 -

150

Median 1470398 3506488 1914727 1412224

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0096 0.0000 0.0000 -

160

Median 1615440 4017264 2182368 1568704

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.3236 0.0000 0.0000 -

170

Median 1801056 4786368 2452808 1751712

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0872 0.0000 0.0000 -

180

Median 2015660 5392410 2855172 1962671

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.1060 0.0000 0.0000 -

190

Median 2177700 6232800 3099600 2114700

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0073 0.0000 0.0000 -

200

Median 2417860 7283260 3572200 2244020

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

266

A.4. Statistical Results of Experiments

Table A.11: Statistical results of experiments LeadingOnes under one-bit noise with noise

level q = 0.8. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 2805646 2183296 1660522 1413426

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

110

Median 4191214 2804180 2123837 1649573

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

120

Median 6479912 3388446 2557860 2004136

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

130

Median 16028144 4103462 2965830 2437922

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 27848262 4930165 3806661 2781068

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

150

Median 46829067 5873568 4423230 3160453

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

160

Median 136519920 6896608 5219192 3762248

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

170

Median - 8231196 6075480 4024620

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

180

Median - 9516201 6661029 4603809

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

190

Median - 10533600 7660800 5009550

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

200

Median - 12305540 9248500 5651920

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

267

Supplemental Materials

Table A.12: Statistical results of experiments OneMax under one-bit noise with noise level

q = 0.85. The p-values of each algorithm come from Wilcoxon rank-sum tests between the

algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 119860 237876 121704 110640

p-value (to SA-2mr) 0.0179 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 183954 423292 187910 166152

p-value (to SA-2mr) 0.0216 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 254555 650414 259750 229619

p-value (to SA-2mr) 0.0001 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

220

Median 331253 911755 334490 295646

p-value (to SA-2mr) 0.0068 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

260

Median 405132 1190910 412923 358386

p-value (to SA-2mr) 0.0039 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

300

Median 483784 1515248 492912 429016

p-value (to SA-2mr) 0.0001 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

340

Median 569008 1860936 578336 496716

p-value (to SA-2mr) 0.0063 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

380

Median 649194 2246021 655139 568342

p-value (to SA-2mr) 0.1384 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

420

Median 731445 2696070 742326 643188

p-value (to SA-2mr) 0.0003 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

460

Median 819636 3082224 822090 709206

p-value (to SA-2mr) 0.0778 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

500

Median 903661 3574868 912362 785576

p-value (to SA-2mr) 0.0024 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

268

A.4. Statistical Results of Experiments

Table A.13: Statistical results of experiments OneMax under one-bit noise with noise level

q = 0.9. The p-values of each algorithm come from Wilcoxon rank-sum tests between the

algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 118016 238798 121704 111562

p-value (to SA-2mr) 0.0202 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 183954 419336 187910 168130

p-value (to SA-2mr) 0.0242 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 254555 649375 257672 230658

p-value (to SA-2mr) 0.0004 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

220

Median 328016 886938 334490 293488

p-value (to SA-2mr) 0.0002 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

260

Median 402906 1187571 414036 362838

p-value (to SA-2mr) 0.0001 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

300

Median 483784 1495851 490630 426734

p-value (to SA-2mr) 0.0002 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

340

Median 564344 1829454 573672 494384

p-value (to SA-2mr) 0.0060 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

380

Median 646816 2221052 661084 561208

p-value (to SA-2mr) 0.0005 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

420

Median 730236 2609022 742326 638352

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

460

Median 812274 3074862 823317 709206

p-value (to SA-2mr) 0.0018 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

500

Median 901175 3576111 912362 778118

p-value (to SA-2mr) 0.0025 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

269

Supplemental Materials

Table A.14: Statistical results of experiments OneMax under one-bit noise with noise level

q = 0.95. The p-values of each algorithm come from Wilcoxon rank-sum tests between the

algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 118016 236032 121704 111562

p-value (to SA-2mr) 0.0017 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 181976 419336 189888 166152

p-value (to SA-2mr) 0.0001 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 253516 634829 259750 230658

p-value (to SA-2mr) 0.0143 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

220

Median 328016 894491 336648 291330

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

260

Median 401793 1173102 409584 358386

p-value (to SA-2mr) 0.0071 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

300

Median 480361 1494710 491771 424452

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

340

Median 566676 1824790 567842 494384

p-value (to SA-2mr) 0.1244 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

380

Median 644438 2192516 649194 565964

p-value (to SA-2mr) 0.0344 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

420

Median 725400 2602977 735072 635934

p-value (to SA-2mr) 0.0003 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

460

Median 811047 3049095 823317 701844

p-value (to SA-2mr) 0.0015 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

500

Median 897446 3484129 904904 778118

p-value (to SA-2mr) 0.0539 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

270

A.4. Statistical Results of Experiments

Table A.15: Statistical results of experiments LeadingOnes under bit-wise noise with noise

level p = 1.0/n. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 1033562 1639316 1168174 935830

p-value (to SA-2mr) 0.0007 0.0000 - 0.0000

p-value (to SA) 0.0002 0.0000 0.0000 -

110

Median 1274114 2043852 1357863 1115085

p-value (to SA-2mr) 0.0311 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

120

Median 1544296 2528162 1661172 1279888

p-value (to SA-2mr) 0.0051 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

130

Median 1817484 3040828 2015206 1513596

p-value (to SA-2mr) 0.0009 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 2105581 3735453 2379534 1663498

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

150

Median 2345014 4250714 2775301 1936793

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

160

Median 2650744 5082032 3143504 2093976

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

170

Median 3097364 5748576 3461276 2348980

p-value (to SA-2mr) 0.0001 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 3458831 6874024 4010540 2622436

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

190

Median 3860850 7747950 4544400 2844450

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

200

Median 4276040 8651720 5010620 3131240

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

271

Supplemental Materials

Table A.16: Statistical results of experiments LeadingOnes under bit-wise noise with noise

level p = 0.8/n. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 729302 1335056 833488 716394

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.6805 0.0000 0.0000 -

110

Median 834667 1640163 1017221 848782

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.3308 0.0000 0.0000 -

120

Median 1006858 2007968 1226240 996320

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0396 0.0000 0.0000 -

130

Median 1117178 2420390 1343146 1116204

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.2900 0.0000 0.0000 -

140

Median 1281744 2898759 1675366 1272843

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.3418 0.0000 0.0000 -

150

Median 1462374 3467371 1814427 1357059

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

160

Median 1645920 4069080 2116328 1557528

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0004 0.0000 0.0000 -

170

Median 1809280 4708240 2329448 1732180

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0063 0.0000 0.0000 -

180

Median 2021894 5446438 2576720 1899292

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0001 0.0000 0.0000 -

190

Median 2158800 6226500 3066000 2088450

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0085 0.0000 0.0000 -

200

Median 2439060 7042640 3425920 2233420

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

272

A.4. Statistical Results of Experiments

Table A.17: Statistical results of experiments LeadingOnes under bit-wise noise with noise

level p = 1.2/n. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 2842526 2033010 1597826 1229948

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

110

Median 5901952 2497414 1857534 1470783

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

120

Median 8872996 3082844 2258006 1759846

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

130

Median 14521366 3772302 2822652 2042478

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 24964338 4463357 3229085 2343930

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

150

Median 68122757 5477383 3774289 2708100

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

160

Median - 6089904 4410456 2995168

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

170

Median - 7127124 4927204 3354364

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

180

Median - 8542658 5852687 3808974

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

190

Median - 9383850 6473250 4179000

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

200

Median - 10680560 7635180 4413840

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

273

Supplemental Materials

Table A.18: Statistical results of experiments OneMax under bit-wise noise with noise level

p = 5 ln(n)/n. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 617740 911858 595612 469298

p-value (to SA-2mr) 0.2177 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 848562 1578444 843617 721970

p-value (to SA-2mr) 0.3147 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 1181343 2374115 1151212 1022376

p-value (to SA-2mr) 0.0568 0.0000 - 0.0004

p-value (to SA) 0.0001 0.0000 0.0004 -

220

Median 1419964 3326557 1528943 1354145

p-value (to SA-2mr) 0.1543 0.0000 - 0.0000

p-value (to SA) 0.1068 0.0000 0.0000 -

260

Median 2067954 4413045 2020095 1737393

p-value (to SA-2mr) 0.5445 0.0000 - 0.0000

p-value (to SA) 0.0004 0.0000 0.0000 -

300

Median 2218104 5727820 2405228 2043531

p-value (to SA-2mr) 0.2621 0.0000 - 0.0000

p-value (to SA) 0.0144 0.0000 0.0000 -

340

Median 2616504 7145248 3031600 2415952

p-value (to SA-2mr) 0.0178 0.0000 - 0.0000

p-value (to SA) 0.0676 0.0000 0.0000 -

380

Median 3408863 8636896 3587213 2834576

p-value (to SA-2mr) 0.3718 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

420

Median 4271397 10396191 4057404 3304197

p-value (to SA-2mr) 0.5716 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

460

Median 4885914 12067545 4796343 3747258

p-value (to SA-2mr) 0.8441 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

500

Median 5132347 14379024 5484116 4125517

p-value (to SA-2mr) 0.7619 0.0000 - 0.0000

p-value (to SA) 0.0002 0.0000 0.0000 -

274

A.4. Statistical Results of Experiments

Table A.19: Statistical results of experiments OneMax under bit-wise noise with noise level

p = 6 ln(n)/n. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median 1395908 1072286 771714 624194

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

140

Median 1517126 1754486 1050318 908891

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

180

Median 2463469 2673347 1440054 1197967

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

220

Median 2590679 3693417 1825668 1581814

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

260

Median 3500385 4908330 2356221 1954428

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

300

Median 5500761 6353088 2936934 2446304

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

340

Median 5604962 7828524 3580786 2852036

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

380

Median 9554804 9375265 4132964 3361303

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

420

Median 12013833 11556831 4866225 3876054

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

460

Median 16521555 13214790 5755857 4436832

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

500

Median 0 15415686 6677396 4970757

p-value (to SA-2mr) 0.0000 0.0000 - 0.0000

p-value (to SA) 0.0000 0.0000 0.0000 -

275

Supplemental Materials

Table A.20: Statistical results of experiments OneMax under bit-wise noise with noise level

p = 7 ln(n)/n. The p-values of each algorithm come from Wilcoxon rank-sum tests between

the algorithm and 2-tournament EAs with SA-2mr and SA (100 runs).

n Stat. χhigh χlow SA-2mr SA

100

Median - 1368248 1052924 874056

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

140

Median - 1981956 1351963 1103724

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

180

Median - 2964267 1712272 1408884

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

220

Median - 4072146 2124551 1858038

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

260

Median - 5353530 2714607 2274972

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

300

Median - 6882512 3260978 2711016

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

340

Median - 8545614 4049518 3185512

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

380

Median - 10453688 4827340 3842848

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

420

Median - 12409176 5868486 4462419

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

460

Median - 14476146 6646659 5123952

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

500

Median - 16773042 7477888 5720286

p-value (to SA-2mr) - 0.0000 - 0.0000

p-value (to SA) - 0.0000 0.0000 -

276

A.4. Statistical Results of Experiments

277

278

References

Achlioptas, Dimitris and Cristopher Moore (2006). “Random k-SAT: Two Moments Suffice

to Cross a Sharp Threshold”. In: SIAM Journal on Computing 36.3, pp. 740–762.

Achterberg, Tobias and Roland Wunderling (2013). “Mixed Integer Programming: Analyz-

ing 12 Years of Progress”. In: Facets of Combinatorial Optimization: Festschrift for Mar-

tin Grötschel. Ed. by Michael Jünger and Gerhard Reinelt. Springer Berlin Heidelberg,

pp. 449–481.

Adenso-Diaz, Belarmino and Manuel Laguna (2006). “Fine-tuning of algorithms using frac-

tional experimental designs and local search”. In: Operations research 54.1, pp. 99–114.

Aishwaryaprajna and Jonathan E. Rowe (2023). “The Voting algorithm is robust to various

noise models”. In: Theoretical Computer Science 957, p. 113844.

Ansotegui, Carlos, Yuri Malitsky, Horst Samulowitz, Meinolf Sellmann, and Kevin Tierney

(2015). “Model-based Genetic Algorithms for Algorithm Configuration”. In: Proceedings of

International Conference on Artificial Intelligence (IJCAI’15). AAAI Press, pp. 733–739.

Ansótegui, Carlos, Fahiem Bacchus, Matti Järvisalo, and Ruben Martins (2017). “MaxSAT

Evaluation 2017”. In: SAT.

Antipov, Denis, Benjamin Doerr, and Vitalii Karavaev (2022). “A Rigorous Runtime Analysis

of the (1 + (λ, λ))GA on Jump Functions”. In: Algorithmica 84.6, pp. 1573–1602.

Auger, Anne and Benjamin Doerr (2011). Theory of Randomized Search Heuristics. World

Scientific.

279

References

Ausiello, Giorgio, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi, Giorgio Gambosi, Marco

Protasi, and Viggo Kann (1999). Complexity and Approximation: Combinatorial Optimiza-

tion Problems and Their Approximability Properties. Springer Berlin, Heidelberg.

Bäck, Thomas (1992). “Self-Adaptation in Genetic Algorithms”. In: Self Adaptation in Ge-

netic Algorithms. MIT Press, pp. 263–271.

Bäck, Thomas, A. E. Eiben, and N. A. L. van der Vaart (2000). “An Emperical Study on

GAs “Without Parameters””. In: Parallel Problem Solving from Nature PPSN VI. Springer

Berlin Heidelberg, pp. 315–324.

Bäck, Thomas, David B. Fogel, and Zbigniew Michalewicz (1997). Handbook of evolutionary

computation. Taylor & Francis.

Bäck, Thomas and Franz Anton Hoffmeister (1991). “Extended Selection Mechanisms in

Genetic Algorithms”. In: International Conference on Genetic Algorithms.

Bäck, Thomas and Martin Schütz (1996). “Intelligent mutation rate control in canonical

genetic algorithms”. In: Foundations of Intelligent Systems. Ed. by Zbigniew W. Raś and

Maciek Michalewicz. Springer Berlin Heidelberg, pp. 158–167.

Baker, James Edward (1989). “An analysis of the effects of selection in genetic algorithms”.

PhD Thesis. Vanderbilt University.

Bambury, Henry, Antoine Bultel, and Benjamin Doerr (2021). “Generalized jump functions”.

In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM, pp. 1124–

1132.

Bartz-Beielstein, Thomas, Carola Doerr, Daan van den Berg, Jakob Bossek, Sowmya Chan-

drasekaran, Tome Eftimov, Andreas Fischbach, Pascal Kerschke, William La Cava, Manuel

Lopez-Ibanez, Katherine M. Malan, Jason H. Moore, Boris Naujoks, Patryk Orzechowski,

Vanessa Volz, Markus Wagner, and Thomas Weise (2020). “Benchmarking in Optimiza-

tion: Best Practice and Open Issues”. In: arXiv:2007.03488 [cs, math, stat].

Boros, Endre and Peter L. Hammer (2002). “Pseudo-Boolean optimization”. In: Discrete

Applied Mathematics 123.1, pp. 155–225.

280

References

Böttcher, Süntje, Benjamin Doerr, and Frank Neumann (2010). “Optimal Fixed and Adaptive

Mutation Rates for the LeadingOnes Problem”. In: Parallel Problem Solving from Nature,

PPSN XI. Springer Berlin Heidelberg, pp. 1–10.

Buzdalov, Maxim and Benjamin Doerr (2017). “Runtime analysis of the (1 + (λ, λ)) ge-

netic algorithm on random satisfiable 3-CNF formulas”. In: Proceedings of the Genetic and

Evolutionary Computation Conference. ACM, pp. 1343–1350.

Case, Brendan and Per Kristian Lehre (2020). “Self-adaptation in non-Elitist Evolutionary

Algorithms on Discrete Problems with Unknown Structure”. In: IEEE Transactions on

Evolutionary Computation 24.4, pp. 650–663.

Cathabard, Stephan, Per Kristian Lehre, and Xin Yao (2011). “Non-Uniform Mutation Rates

for Problems with Unknown Solution Lengths”. In: Proceedings of the 11th Workshop

Proceedings on Foundations of Genetic Algorithms. FOGA ’11. Association for Computing

Machinery, pp. 173–180.

Chen, Shu-Heng, ed. (2002). Evolutionary Computation in Economics and Finance. 1st ed.

Studies in Fuzziness and Soft Computing. Physica Heidelberg.

Coja-Oghlan, Amin (2014). “The asymptotic k-SAT threshold”. In: Proceedings of the forty-

sixth annual ACM symposium on Theory of computing. ACM, pp. 804–813.

Cook, Stephen A. (1971). “The Complexity of Theorem-Proving Procedures”. In: Proceedings

of the Third Annual ACM Symposium on Theory of Computing. STOC ’71. Association

for Computing Machinery, pp. 151–158.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2001).

Introduction to Algorithms. 2nd. The MIT Press.

Corus, Dogan, Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre (2018). “Level-

Based Analysis of Genetic Algorithms and Other Search Processes”. In: IEEE Transactions

on Evolutionary Computation 22.5, pp. 707–719.

Črepinšek, Matej, Shih-Hsi Liu, and Marjan Mernik (2013). “Exploration and Exploitation

in Evolutionary Algorithms: A Survey”. In: ACM Comput. Surv. 45.3.

281

References

Cruz, Carlos, Juan R. González, and David A. Pelta (2011). “Optimization in dynamic

environments: a survey on problems, methods and measures”. In: Soft Computing 15.7,

pp. 1427–1448.

Dang, Duc-Cuong, Anton Eremeev, and Per Kristian Lehre (2021a). “Escaping Local Optima

with Non-Elitist Evolutionary Algorithms”. In: Proceedings of the AAAI Conference on

Artificial Intelligence. Vol. 35, pp. 12275–12283.

– (2021b). “Non-Elitist Evolutionary Algorithms Excel in Fitness Landscapes with Sparse

Deceptive Regions and Dense Valleys”. In: Proceedings of the Genetic and Evolutionary

Computation Conference. GECCO ’21. Association for Computing Machinery, pp. 1133–

1141.

Dang, Duc-Cuong, Tobias Friedrich, Timo Kotzing, Martin S. Krejca, Per Kristian Lehre,

Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton (2018). “Escaping Local Optima

Using Crossover With Emergent Diversity”. In: IEEE Transactions on Evolutionary Com-

putation 22.3, pp. 484–497.

Dang, Duc-Cuong, Thomas Jansen, and Per Kristian Lehre (2015). “Populations can be

Essential in Dynamic Optimisation”. In: Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation. ACM, pp. 1407–1414.

– (2017). “Populations Can Be Essential in Tracking Dynamic Optima”. In: Algorithmica

78.2, pp. 660–680.

Dang, Duc-Cuong and Per Kristian Lehre (2015). “Efficient Optimisation of Noisy Fitness

Functions with Population-based Evolutionary Algorithms”. In: Proceedings of the 2015

ACM Conference on Foundations of Genetic Algorithms XIII - FOGA ’15. ACM Press,

pp. 62–68.

– (2016a). “Runtime Analysis of Non-elitist Populations: From Classical Optimisation to

Partial Information”. In: Algorithmica 75.3, pp. 428–461.

282

References

– (2016b). “Self-adaptation of Mutation Rates in Non-elitist Populations”. In: Parallel Prob-

lem Solving from Nature – PPSN XIV. Vol. 9921. Springer International Publishing,

pp. 803–813.

Dang, Duc-Cuong, Per Kristian Lehre, and Phan Trung Hai Nguyen (2019). “Level-Based

Analysis of the Univariate Marginal Distribution Algorithm”. In: Algorithmica 81.2, pp. 668–

702.

Darwin, Charles (1859). On the Origin of Species.

De Jong, Kenneth A. (1975). “An analysis of the behavior of a class of genetic adaptive

systems.” PhD thesis. University of Michigan.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (2002). “A fast and elitist multiobjective

genetic algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary Computation 6.2,

pp. 182–197.

Doerr, Benjamin (2022). “Does Comma Selection Help to Cope with Local Optima?” In:

Algorithmica 84.6, pp. 1659–1693.

Doerr, Benjamin and Carola Doerr (2018). “Optimal Static and Self-Adjusting Parameter

Choices for the (1 + (λ, λ)) Genetic Algorithm”. In: Algorithmica 80.5, pp. 1658–1709.

– (2020). “Theory of Parameter Control for Discrete Black-Box Optimization: Provable Per-

formance Gains Through Dynamic Parameter Choices”. In: Theory of Evolutionary Com-

putation: Recent Developments in Discrete Optimization. Ed. by Benjamin Doerr and

Frank Neumann. Springer International Publishing, pp. 271–321.

Doerr, Benjamin, Carola Doerr, and Franziska Ebel (2015). “From black-box complexity to

designing new genetic algorithms”. In: Theoretical Computer Science 567, pp. 87–104.

Doerr, Benjamin, Carola Doerr, and Johannes Lengler (2019). “Self-Adjusting Mutation

Rates with Provably Optimal Success Rules”. In: Proceedings of the Genetic and Evo-

lutionary Computation Conference. GECCO ’19. Association for Computing Machinery,

pp. 1479–1487.

283

References

Doerr, Benjamin, Carola Doerr, and Johannes Lengler (2021). “Self-Adjusting Mutation

Rates with Provably Optimal Success Rules”. In: Algorithmica 83.10, pp. 3108–3147.

Doerr, Benjamin, Christian Gießen, Carsten Witt, and Jing Yang (2019). “The (1+ λ) Evo-

lutionary Algorithm with Self-Adjusting Mutation Rate”. In: Algorithmica 81.2, pp. 593–

631.

Doerr, Benjamin and Leslie Ann Goldberg (2010). “Drift Analysis with Tail Bounds”. In:

Parallel Problem Solving from Nature, PPSN XI. Springer Berlin Heidelberg, pp. 174–

183.

– (2013). “Adaptive Drift Analysis”. In: Algorithmica 65.1, pp. 224–250.

Doerr, Benjamin, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges

(2013). “Mutation Rate Matters Even When Optimizing Monotonic Functions”. In: Evo-

lutionary Computation 21.1, pp. 1–27.

Doerr, Benjamin, Daniel Johannsen, and Carola Winzen (2012). “Multiplicative Drift Anal-

ysis”. In: Algorithmica 64.4, pp. 673–697.

Doerr, Benjamin and Timo Kötzing (2021). “Multiplicative Up-Drift”. In: Algorithmica 83.10,

pp. 3017–3058.

Doerr, Benjamin, Huu Phuoc Le, R{́e}gis Makhmara, and Ta Duy Nguyen (2017). “Fast

genetic algorithms”. In: Proceedings of the Genetic and Evolutionary Computation Con-

ference. ACM, pp. 777–784.

Doerr, Benjamin and Frank Neumann, eds. (2019). Theory of Evolutionary Computation:

Recent Developments in Discrete Optimization. Natural Computing Series. Springer Cham.

Doerr, Benjamin and Amirhossein Rajabi (2023). “Stagnation detection meets fast mutation”.

In: Theoretical Computer Science 946, p. 113670.

Doerr, Benjamin, Carsten Witt, and Jing Yang (2021). “Runtime Analysis for Self-adaptive

Mutation Rates”. In: Algorithmica 83.4, pp. 1012–1053.

284

References

Droste, Stefan (2002). “Analysis of the (1+1) EA for a dynamically changing OneMax-

variant”. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02.

Vol. 1, pp. 55–60.

– (2003). “Analysis of the (1+1) EA for a Dynamically Bitwise Changing OneMax”. In:

Genetic and Evolutionary Computation — GECCO 2003. Vol. 2723. Springer Berlin Hei-

delberg, pp. 909–921.

– (2004). “Analysis of the (1+1) EA for a Noisy OneMax”. In: Genetic and Evolutionary

Computation – GECCO 2004. Vol. 3102. Springer Berlin Heidelberg, pp. 1088–1099.

Droste, Stefan, Thomas Jansen, and Ingo Wegener (2002). “On the analysis of the (1+1)

evolutionary algorithm”. In: Theoretical Computer Science 276.1, pp. 51–81.

– (2006). “Upper and Lower Bounds for Randomized Search Heuristics in Black-Box Opti-

mization”. In: Theory of Computing Systems 39.4, pp. 525–544.

Eiben, A. E., R. Hinterding, and Z. Michalewicz (1999). “Parameter control in evolutionary

algorithms”. In: IEEE Transactions on Evolutionary Computation 3.2, pp. 124–141.

Eiben, A. E., M. C. Schut, and A. R. de Wilde (2006). “Is Self-adaptation of Selection

Pressure and Population Size Possible? – A Case Study”. In: Parallel Problem Solving

from Nature - PPSN IX. Vol. 4193. Springer Berlin Heidelberg, pp. 900–909.

Fleming, P.J and R.C Purshouse (2002). “Evolutionary algorithms in control systems engi-

neering: a survey”. In: Control Engineering Practice 10.11, pp. 1223–1241.

Fogel, David B. (1998). Evolutionary Computation: The Fossil Record. IEEE Press, New

York.

– (2000). “What is evolutionary computation?” In: IEEE Spectrum 37.2, pp. 26–32.

Friedrich, Tobias, Timo Kotzing, Martin S. Krejca, and Andrew M. Sutton (2016). “The

Compact Genetic Algorithm is Efficient under Extreme Gaussian Noise”. In: IEEE Trans-

actions on Evolutionary Computation, pp. 1–1.

Friedrich, Tobias, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton (2015). “The

benefit of recombination in noisy evolutionary search”. In: Algorithms and Computation -

285

References

26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Pro-

ceedings. Vol. 9472. Springer, pp. 140–150.

Friedrich, Tobias, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton (2016). “Robust-

ness of Ant Colony Optimization to Noise”. In: Evolutionary Computation 24.2, pp. 237–

254.

Galaviz, J. and A. Xuri (1996). “A self-adaptive genetic algorithm for function optimization”.

In: Proceedings Mexico-USA Collaboration in Intelligent Systems Technologies. Pp. 156–

161.

Gen, Mitsuo and Runwei Cheng (1999). Genetic algorithms and engineering optimization.

Vol. 7. John Wiley & Sons.

Gießen, Christian and Timo Kötzing (2016). “Robustness of Populations in Stochastic En-

vironments”. In: Algorithmica 75.3, pp. 462–489.

Goldberg, David E. and Kalyanmoy Deb (1991). “A Comparative Analysis of Selection

Schemes Used in Genetic Algorithms”. In: Foundations of Genetic Algorithms. Vol. 1.

Elsevier, pp. 69–93.

Gottlieb, Jens, Elena Marchiori, and Claudio Rossi (2002). “Evolutionary Algorithms for the

Satisfiability Problem”. In: Evolutionary Computation 10.1, pp. 35–50.

Hajek, Bruce (1982). “Hitting-time and occupation-time bounds implied by drift analysis

with applications”. In: Advances in Applied Probability 14.3, pp. 502–525.

Harik, G.R., F.G. Lobo, and D.E. Goldberg (1999). “The compact genetic algorithm”. In:

IEEE Transactions on Evolutionary Computation 3.4, pp. 287–297.

Harman, Mark, S. Afshin Mansouri, and Yuanyuan Zhang (2012). “Search-Based Software

Engineering: Trends, Techniques and Applications”. In: ACM Comput. Surv. 45.1.

He, Jun and Xin Yao (2004). “A study of drift analysis for estimating computation time of

evolutionary algorithms”. In: Natural Computing 3.1, pp. 21–35.

Hevia Fajardo, Mario Alejandro (2019). “An Empirical Evaluation of Success-Based Param-

eter Control Mechanisms for Evolutionary Algorithms”. In: Proceedings of the Genetic and

286

References

Evolutionary Computation Conference. GECCO ’19. Association for Computing Machin-

ery, pp. 787–795.

– (2023). “Runtime Analysis of Success-Based Parameter Control Mechanisms for Evolu-

tionary Algorithms on Multimodal Problems”. PhD Thesis. University of Sheffield.

Hevia Fajardo, Mario Alejandro and Dirk Sudholt (2021a). “Self-Adjusting Offspring Pop-

ulation Sizes Outperform Fixed Parameters on the Cliff Function”. In: Proceedings of the

16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. FOGA ’21. Asso-

ciation for Computing Machinery.

– (2021b). “Self-Adjusting Population Sizes for Non-Elitist Evolutionary Algorithms: Why

Success Rates Matter”. In: Proceedings of the Genetic and Evolutionary Computation Con-

ference. GECCO ’21. Association for Computing Machinery, pp. 1151–1159.

– (2022). “Hard Problems Are Easier for Success-Based Parameter Control”. In: Proceedings

of the Genetic and Evolutionary Computation Conference. GECCO ’22. Association for

Computing Machinery, pp. 796–804.

– (2023). “Theoretical and Empirical Analysis of Parameter Control Mechanisms in the (1

+ (λ, λ)) Genetic Algorithm”. In: ACM Trans. Evol. Learn. Optim. 2.4.

Holland, John (1975). Adaptation in natural and artificial systems. University of Michigan

Press, Ann Arbor.

Huang, Changwu, Yuanxiang Li, and Xin Yao (2020). “A Survey of Automatic Parameter

Tuning Methods for Metaheuristics”. In: IEEE Transactions on Evolutionary Computation

24.2, pp. 201–216.

Hutter, Frank, Holger H Hoos, and Kevin Leyton-Brown (2009). “ParamILS: An Auto-

matic Algorithm Con guration Framework”. In: Journal of Artificial Intelligence Research,

pp. 267–306.

– (2011). “Sequential Model-Based Optimization for General Algorithm Configuration”. In:

Learning and Intelligent Optimization. Springer Berlin Heidelberg, pp. 507–523.

Intriligator, Michael D. (2002). Mathematical optimization and economic theory. SIAM.

287

References

Jagerskupper, Jens and Tobias Storch (2007). “When the Plus Strategy Outperforms the

Comma Strategyand When Not”. In: 2007 IEEE Symposium on Foundations of Compu-

tational Intelligence. IEEE, pp. 25–32.

Jansen, Thomas (2013). Analyzing Evolutionary Algorithms: The Computer Science Perspec-

tive. 1st ed. Natural Computing Series. Springer Berlin Heidelberg.

Jansen, Thomas, Kenneth A. De Jong, and Ingo Wegener (2005). “On the Choice of the

Offspring Population Size in Evolutionary Algorithms”. In: Evol. Comput. 13.4, pp. 413–

440.

Jansen, Thomas and Ulf Schellbach (2005). “Theoretical Analysis of a Mutation-Based Evo-

lutionary Algorithm for a Tracking Problem in the Lattice”. In: Proceedings of the 7th

Annual Conference on Genetic and Evolutionary Computation. GECCO ’05. Association

for Computing Machinery, pp. 841–848.

Jansen, Thomas and Ingo Wegener (2002). “The Analysis of Evolutionary Algorithms—A

Proof That Crossover Really Can Help”. In: Algorithmica 34.1, pp. 47–66.

– (2006). “On the analysis of a dynamic evolutionary algorithm”. In: Journal of Discrete

Algorithms 4.1, pp. 181–199.

Jin, Yaochu and Jürgen Branke (2005). “Evolutionary optimization in uncertain environments-

a survey”. In: IEEE Transactions on Evolutionary Computation 9.3, pp. 303–317.

Jones, Terry (1995). “Evolutionary algorithms, fitness landscapes and search”. PhD Thesis.

University of New Mexico.

Kauffman, Stuart A. and Edward D. Weinberger (1989). “The NK model of rugged fitness

landscapes and its application to maturation of the immune response”. In: Journal of

Theoretical Biology 141.2, pp. 211–245.

Kaufmann, Marc, Maxime Larcher, Johannes Lengler, and Xun Zou (2023). “OneMax Is

Not the Easiest Function for Fitness Improvements”. In: Evolutionary Computation in

Combinatorial Optimization. Ed. by Leslie Pérez Cáceres and Thomas Stützle. Springer

Nature Switzerland, pp. 162–178.

288

References

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). “Optimization by Simulated Anneal-

ing”. In: Science 220.4598, pp. 671–680.

Kötzing, Timo, Andrei Lissovoi, and Carsten Witt (2015). “(1+1) EA on Generalized Dy-

namic OneMax”. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic

Algorithms XIII. FOGA ’15. Association for Computing Machinery, pp. 40–51.

Kötzing, Timo and Hendrik Molter (2012). “ACO Beats EA on a Dynamic Pseudo-Boolean

Function”. In: Parallel Problem Solving from Nature - PPSN XII. Springer Berlin Heidel-

berg, pp. 113–122.

Koza, John R. (1989). “Hierarchical Genetic Algorithms Operating on Populations of Com-

puter Programs”. In: Proceedings of the 11th International Joint Conference on Artificial

Intelligence - Volume 1. IJCAI’89. Morgan Kaufmann Publishers Inc., pp. 768–774.

Lehre, Per Kristian (2010). “Negative Drift in Populations”. In: Parallel Problem Solving

from Nature, PPSN XI. Springer Berlin Heidelberg, pp. 244–253.

– (2011). “Fitness-levels for non-elitist populations”. In: Proceedings of the 13th annual con-

ference on Genetic and evolutionary computation - GECCO ’11. ACM Press, p. 2075.

Lehre, Per Kristian and Phan Trung Hai Nguyen (2019). “Runtime analysis of the univariate

marginal distribution algorithm under low selective pressure and prior noise”. In: Proceed-

ings of the Genetic and Evolutionary Computation Conference. ACM, pp. 1497–1505.

– (2021). “Runtime Analyses of the Population-Based Univariate Estimation of Distribution

Algorithms on LeadingOnes”. In: Algorithmica 83.10, pp. 3238–3280.

Lehre, Per Kristian and Xiaoyu Qin (2021). “More Precise Runtime Analyses of Non-elitist

EAs in Uncertain Environments”. In: Proceedings of the Genetic and Evolutionary Com-

putation Conference. ACM, pp. 1160–1168.

– (2022a). “More Precise Runtime Analyses of Non-elitist Evolutionary Algorithms in Un-

certain Environments”. In: Algorithmica.

289

References

Lehre, Per Kristian and Xiaoyu Qin (2022b). “Self-Adaptation via Multi-Objectivisation: A

Theoretical Study”. In: Proceedings of the Genetic and Evolutionary Computation Confer-

ence. GECCO ’22. Association for Computing Machinery, pp. 1417–1425.

– (2023a). “Self-Adaptation Can Help Evolutionary Algorithms Track Dynamic Optima”.

In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’23.

Association for Computing Machinery, pp. 1619–1627.

– (2023b). “Self-Adaptation Can Improve the Noise-Tolerance of Evolutionary Algorithms”.

In: Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algo-

rithms. FOGA ’23. Association for Computing Machinery, pp. 105–116.

Lehre, Per Kristian and Dirk Sudholt (2020). “Parallel Black-Box Complexity With Tail

Bounds”. In: IEEE Transactions on Evolutionary Computation 24.6, pp. 1010–1024.

Lehre, Per Kristian and Carsten Witt (2012). “Black-Box Search by Unbiased Variation”. In:

Algorithmica 64.4, pp. 623–642.

– (2021). “Tail bounds on hitting times of randomized search heuristics using variable drift

analysis”. In: Combinatorics, Probability and Computing 30.4, pp. 550–569.

Lehre, Per Kristian and Xin Yao (2012). “On the Impact of Mutation-Selection Balance

on the Runtime of Evolutionary Algorithms”. In: IEEE Transactions on Evolutionary

Computation 16.2, pp. 225–241.

Lengler, Johannes (2020). “Drift Analysis”. In: Theory of Evolutionary Computation: Recent

Developments in Discrete Optimization. Ed. by Benjamin Doerr and Frank Neumann.

Springer International Publishing, pp. 89–131.

Lengler, Johannes and Jonas Meier (2020). “Large Population Sizes and Crossover Help in

Dynamic Environments”. In: Parallel Problem Solving from Nature – PPSN XVI. Springer

International Publishing, pp. 610–622.

– (2022). “Large population sizes and crossover help in dynamic environments”. In: Natural

Computing.

290

References

Lengler, Johannes and Simone Riedi (2022). “Runtime Analysis of the (µ + 1)-EA on the

Dynamic BinVal Function”. In: SN Computer Science 3.4, p. 324.

Lengler, Johannes and Ulysse Schaller (2018). “The (1+1)-EA on Noisy Linear Functions

with Random Positive Weights”. In: 2018 IEEE Symposium Series on Computational In-

telligence (SSCI), pp. 712–719.

Lissovoi, Andrei (2016). “Analysis of Ant Colony Optimization and Population-Based Evolu-

tionary Algorithms on Dynamic Problems”. PhD Thesis. Technical University of Denmark.

Lissovoi, Andrei and Carsten Witt (2015). “Runtime analysis of ant colony optimization on

dynamic shortest path problems”. In: Theoretical Computer Science 561, pp. 73–85.

– (2017). “A Runtime Analysis of Parallel Evolutionary Algorithms in Dynamic Optimiza-

tion”. In: Algorithmica 78.2, pp. 641–659.

Lobo, Fernando G., Cláudio F. Lima, and Zbigniew Michalewicz, eds. (2007). Parameter

Setting in Evolutionary Algorithms. Springer Science & Business Media.

López-Ibáñez, Manuel, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and

Thomas Stützle (2016). “The irace package: Iterated racing for automatic algorithm con-

figuration”. In: Operations Research Perspectives 3, pp. 43–58.

Malan, Katherine Mary (2021). “A Survey of Advances in Landscape Analysis for Optimi-

sation”. In: Algorithms 14.2.

Martins, Ruben, Vasco Manquinho, and Inês Lynce (2014). “Open-WBO: A Modular MaxSAT

Solver”. In: Theory and Applications of Satisfiability Testing – SAT 2014. Vol. 8561.

Springer International Publishing, pp. 438–445.

Meyer-Nieberg, Silja (2007). “Self-adaptation in evolution strategies”. PhD Thesis. Dortmund

University of Technology.

Mühlenbein, Heinz and Gerhard Paaß (1996). “From recombination of genes to the estimation

of distributions I. Binary parameters”. In: International conference on parallel problem

solving from nature. Springer, pp. 178–187.

291

References

Neumann, Frank and Carsten Witt (2010). Bioinspired Computation in Combinatorial Op-

timization: Algorithms and Their Computational Complexity. Natural Computing Series.

Springer Berlin, Heidelberg.

Nguyen, Phan Trung Hai (2021). “Runtime Analysis of Univariate Estimation of Distribu-

tion Algorithms under Linearity, Epistasis and Deception”. PhD Thesis. Univerisity of

Birmingham.

Nguyen, Trung Thanh, Shengxiang Yang, and Juergen Branke (2012). “Evolutionary dy-

namic optimization: A survey of the state of the art”. In: Swarm and Evolutionary Com-

putation 6, pp. 1–24.

Niculescu, Constantin P. and Andrei Vernescu (2004). “A two sided estimate of ex − (1 +

x/n)n”. In: Journal of Inequalities in Pure and Applied Mathematics 5.3.

Ochoa, Gabriela (2006). “Error Thresholds in Genetic Algorithms”. In: Evolutionary Com-

putation 14.2, pp. 157–182.

Ochoa, Gabriela and Francisco Chicano (2019). “Local optima network analysis for MAX-

SAT”. In: Proceedings of the Genetic and Evolutionary Computation Conference Compan-

ion. ACM, pp. 1430–1437.

Ochoa, Gabriela, Marco Tomassini, Sebástien Vérel, and Christian Darabos (2008). “A study

of NK landscapes’ basins and local optima networks”. In: Proceedings of the 10th annual

conference on Genetic and evolutionary computation - GECCO ’08. ACM Press, p. 555.

Oliveto, Pietro S. and Carsten Witt (2011). “Simplified Drift Analysis for Proving Lower

Bounds in Evolutionary Computation”. In: Algorithmica 59.3, pp. 369–386.

Oliveto, Pietro S. and Christine Zarges (2013). “Analysis of Diversity Mechanisms for Op-

timisation in Dynamic Environments with Low Frequencies of Change”. In: Proceedings

of the 15th Annual Conference on Genetic and Evolutionary Computation. GECCO ’13.

Association for Computing Machinery, pp. 837–844.

Papadimitriou, Christos H. and Kenneth Steiglitz (1998). Combinatorial optimization: algo-

rithms and complexity. Courier Corporation.

292

References

Pintér, János D. (2006). Global Optimization: Scientific and Engineering Case Studies. Non-

convex Optimization and Its Applications. Springer New York, NY.

Qian, Chao, Chao Bian, Wu Jiang, and Ke Tang (2019). “Running Time Analysis of the

(1+1)-EA for OneMax and LeadingOnes Under Bit-Wise Noise”. In: Algorithmica 81.2,

pp. 749–795.

Qian, Chao, Chao Bian, Yang Yu, Ke Tang, and Xin Yao (2021). “Analysis of Noisy Evolu-

tionary Optimization When Sampling Fails”. In: Algorithmica 83.4, pp. 940–975.

Qian, Chao, Yang Yu, Ke Tang, Yaochu Jin, Xin Yao, and Zhi-Hua Zhou (2018). “On the

Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments”. In: Evo-

lutionary Computation 26.2, pp. 237–267.

Qin, Xiaoyu and Per Kristian Lehre (2022). “Self-adaptation via Multi-objectivisation: An

Empirical Study”. In: Parallel Problem Solving from Nature – PPSN XVII. Springer In-

ternational Publishing, pp. 308–323.

Rajabi, Amirhossein (2022). “Single-trajectory Search Heuristics on Discrete Multimodal

Optimization Problems”. PhD Thesis. Technical University of Denmark.

Rajabi, Amirhossein and Carsten Witt (2021). “Stagnation detection in highly multimodal

fitness landscapes”. In: Proceedings of the Genetic and Evolutionary Computation Confer-

ence. ACM, pp. 1178–1186.

– (2022). “Self-Adjusting Evolutionary Algorithms for Multimodal Optimization”. In: Algo-

rithmica 84.6, pp. 1694–1723.

Rechenberg, Ingo (1978). “Evolutionsstrategien”. In: Simulationsmethoden in der Medizin

und Biologie. Springer Berlin Heidelberg, pp. 83–114.

Renegar, James (2001). A mathematical view of interior-point methods in convex optimiza-

tion. SIAM.

Rohlfshagen, Philipp, Per Kristian Lehre, and Xin Yao (2009). “Dynamic Evolutionary Opti-

misation: An Analysis of Frequency and Magnitude of Change”. In: Proceedings of the 11th

293

References

Annual Conference on Genetic and Evolutionary Computation. GECCO ’09. Association

for Computing Machinery, pp. 1713–1720.

Rowe, Jonathan E. and Aishwaryaprajna (2019). “The benefits and limitations of voting

mechanisms in evolutionary optimisation”. In: Proceedings of the 15th ACM/SIGEVO

Conference on Foundations of Genetic Algorithms - FOGA ’19. ACM Press, pp. 34–42.

Rowe, Jonathan E. and Dirk Sudholt (2014). “The choice of the offspring population size in

the (1, λ) evolutionary algorithm”. In: Theoretical Computer Science 545, pp. 20–38.

Ruder, Sebastian (2017). An overview of gradient descent optimization algorithms.

Schwefel, Hans-Paul (1981). Numerical optimization of computer models. John Wiley & Sons,

Inc.

Serpell, Martin and James E. Smith (2010). “Self-Adaptation of Mutation Operator and

Probability for Permutation Representations in Genetic Algorithms”. In: Evolutionary

Computation 18.3, pp. 491–514.

Slowik, Adam and Halina Kwasnicka (2020). “Evolutionary algorithms and their applications

to engineering problems”. In: Neural Computing and Applications 32.16, pp. 12363–12379.

Smith, Jim (2001). “Modelling Gas with Self Adaptive Mutation Rates”. In: Proceedings of the

3rd Annual Conference on Genetic and Evolutionary Computation. GECCO’01. Morgan

Kaufmann Publishers Inc., pp. 599–606.

Smith, Jim and T. C. Fogarty (1996). “Self adaptation of mutation rates in a steady state

genetic algorithm”. In: Proceedings of IEEE International Conference on Evolutionary

Computation. IEEE, pp. 318–323.

Srinivas, N. and Kalyanmoy Deb (1994). “Muiltiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms”. In: Evolutionary Computation 2.3, pp. 221–248.

Stadler, Peter F. (2002). “Fitness landscapes”. In: Biological Evolution and Statistical Physics.

Ed. by Michael Lässig and Angelo Valleriani. Springer Berlin Heidelberg, pp. 183–204.

294

References

Sudholt, Dirk (2013). “A New Method for Lower Bounds on the Running Time of Evolu-

tionary Algorithms”. In: IEEE Transactions on Evolutionary Computation 17.3, pp. 418–

435.

– (2021). “Analysing the Robustness of Evolutionary Algorithms to Noise: Refined Runtime

Bounds and an Example Where Noise is Beneficial”. In: Algorithmica 83.4, pp. 976–1011.

Sudholt, Dirk and Carsten Witt (2016). “Update Strength in EDAs and ACO: How to Avoid

Genetic Drift”. In: Proceedings of the Genetic and Evolutionary Computation Conference

2016. ACM, pp. 61–68.

Tong, Hao, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, and Xin Yao (2022).

“A Novel Generalized Metaheuristic Framework for Dynamic Capacitated Arc Routing

Problems”. In: IEEE Transactions on Evolutionary Computation 26.6, pp. 1486–1500.

Topsoe, Flemming (2007). “Some bounds for the logarithmic function”. In: Inequality Theory

and Applications 4, p. 137.

Vanderbei, Robert J. (2020). Linear Programming: Foundations and Extensions. 5th ed.

International Series in Operations Research & Management Science. Springer Cham.

Weicker, Karsten (2005). “Analysis of local operators applied to discrete tracking problems”.

In: Soft Computing 9.11, pp. 778–792.

Wilcoxon, Frank (1992). “Individual comparisons by ranking methods”. In: Breakthroughs in

statistics. Springer, pp. 196–202.

Witt, Carsten (2013). “Tight Bounds on the Optimization Time of a Randomized Search

Heuristic on Linear Functions”. In: Combinatorics, Probability and Computing 22.2, pp. 294–

318.

Wright, Sewall (1932). “The roles of mutation, inbreeding, crossbreeding and selection in

evolution”. In: Proceedings of the sixth international congress of Genetics. Vol. 1, pp. 356–

366.

Zhou, Zhi-Hua, Yang Yu, and Chao Qian (2019). Evolutionary Learning: Advances in The-

ories and Algorithms. Springer Singapore.

295

	Title Page
	Abstract
	1 Introduction
	1.1 General Introduction
	1.2 Research Questions
	1.3 Contributions and Outline
	1.4 Publications

	2 Background
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Evolutionary Algorithms (EAs)
	2.2.2 Self-adaptive EAs
	2.2.3 Runtime Analysis
	2.2.4 Benchmarking Functions
	2.2.5 Noise and Dynamic Models

	2.3 Related Work
	2.3.1 Parameter Settings in EAs
	2.3.2 Self-adaptation in EAs
	2.3.3 EAs in Uncertain Environments
	2.3.4 EAs on Multi-modal Landscapes

	3 Fixed Parameter Settings in Uncertain Environments
	3.1 Introduction
	3.2 2-tournament EA in Uncertain Environments
	3.3 Noisy Optimisation
	3.3.1 One-bit Noise Model
	3.3.2 Bit-wise Noise Model
	3.3.3 Gaussian Noise Model
	3.3.4 Symmetric Noise Model

	3.4 Dynamic Optimisation
	3.5 Conclusion

	4 Self-adaptation in Noisy Environments
	4.1 Introduction
	4.2 Algorithms
	4.3 Analysed Noise Models
	4.4 High/Low Mutation Rates Lead to Failed/Slow Optimisation
	4.5 Uniformly Mixing Mutation Rates Do Not Help under Noise
	4.6 Self-adapting Mutation Rates Guarantee Efficiency Under Noise
	4.7 Experiments
	4.7.1 Symmetric Noise
	4.7.2 One-bit Noise
	4.7.3 Bit-wise Noise

	4.8 Conclusion

	5 Self-adaptation on Dynamic Optimisation
	5.1 Introduction
	5.2 Dynamic Substring Matching Problem
	5.3 Level-based Theorem (Tail Bounds)
	5.4 The Self-adaptive EA on DSM
	5.5 Static Mutation-based EAs Get Lost on DSM
	5.6 Conclusion

	6 Self-adaptation in Multi-modal Landscapes
	6.1 Introduction
	6.2 PeakedLOm,k Problems
	6.3 Multi-objective Self-adaptive EA
	6.3.1 Multi-objective Sorting Partial Order
	6.3.2 Self-adapting Mutation Rate

	6.4 Inefficiency of Fixed Mutation Rate
	6.5 Efficiency of MOSA-EA
	6.5.1 Partitioning the Search Space into Levels
	6.5.2 Definitions and Useful Lemmas
	6.5.3 Applying the Level-based Theorem

	6.6 Conclusion

	7 Self-adaptation on Complex Combinatorial Optimisation Problems
	7.1 Introduction
	7.2 Parameter Settings in MOSA-EA
	7.3 Experimental Settings and Methodology
	7.3.1 Parameter Settings in Other Algorithms
	7.3.2 Theoretical Benchmarking Functions
	7.3.3 Complex Combinatorial Optimisation Problems

	7.4 Results and Discussion
	7.4.1 Theoretical Benchmarking Functions
	7.4.2 Complex Combinatorial Optimisation Problems

	7.5 Conclusion

	8 Conclusion
	8.1 Summary
	8.2 Future Work

	A Supplemental Materials
	A.1 Definitions
	A.2 Useful Inequalities and Lemmas
	A.3 Useful Theorem
	A.4 Statistical Results of Experiments

	References

