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Motivation

Dense fitness valley

Sparse local optima 
with high fitness

Sparse local optima 
with low fitness

Optimising

Elitist EAs can get stuck on local optima (Jagerskupper and Storch,
2007; Dang et al., 2020; Doerr, 2022; Dang et al., 2021).

Sparse deceptive regions (sparse local optima)

2 / 15



Motivation - Previous Works

Dense fitness valley

Sparse local optima 
with high fitness

Sparse local optima 
with low fitness

Optimising

SparseLocalOpt ⇒ a kind of fitness landscapes with sparse deceptive regions
(local optima) and dense fitness valleys (Dang et al., 2021).

Non-linear non-elitist selection and sufficiently high mutation rate (Dang et al.,

2021) ⇒
Sparse local optimal individuals ⇒ higher chance to be selected but only
survive a small percentage of such individuals after mutation;
Dense fitness valley individuals ⇒ less chance of being selected but can have
higher chance of surviving mutation.
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Motivation - Problems

Dense fitness valley

Sparse local optima 
with high fitness

Sparse local optima 
with low fitness

Optimising

However,

We need know the sparsity of local optima to set the mutation rate;

Fitness functions could contain several local optimums with different
sparsities.
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Contribution: A new EA for single-objective (MOSA-EA)

The Multi-Objective Self-Adaptive EA (MOSA-EA)3

Non-elitism
Self-adaptation
Multi-objectivisation

Mutation rate

Fitness

Dense fitness valley

Sparse local optima 
with high fitness

Sparse local optima 
with low fitness

Optimising

3Implementation can be found in https://github.com/ChengCheng-Qin/mosa-ea.
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Contribution: Analyses on MOSA-EA

Theoretical study: Escaping local optima (Runtime analyses)

MOSA-EA can efficiently escape an artificial local optimum with
unknown sparsity.
Other fixed mutation rate EAs fail.

Empricial study: Complex combinatorial optimisation problems
MOSA-EA can outperforms a range of EAs on random
NK-Landscape and k-Sat instances.
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MOSA-EA

6

2
3
4
5

7

8

9!!"#"

!!$#"

!!$%"

!!"

!!"%"

!
"

…
…

1

…

…

!… $$ − 1$ − 2 $ − 1 $ + 2 …0

10
11

12

…

Figure: Fitness-first sorting (Case and
Lehre, 2020)
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Figure: Multi-objective sorting

MOSA-EA:

Multi-objective sorting mechanism ⇒ Strict non-dominated Pareto fronts
(µ,λ) selection ⇒ from sorted population.
Self-adapting mutation rate strategy ⇒ New mutation rate χ′ is

Aχ with probability pinc;
χ/A otherwise.
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Main Results

PeakedLOm,k(x) =

!
m if x = {0}k∗n−k

LO(x) otherwise.

Table: Runtime analyses of EAs1 on PeakedLOm,k (for some constant c , δ > 0)

Algorithm PeakedLOm,k Runtime T

(µ + λ) EA Any k ≤ n and k,m ∈ Ω(n) Pr (T ≤ ecn) ≤ e−Ω(n)

(µ,λ) EA Any k ≤ n and k,m ∈ Ω(n) Pr (T ≤ ecn) ≤ e−Ω(n) 2

2-tour. EA Any k < (ln(3/2) − δ) n and k,m ∈ Ω(n) Pr (T ≤ ecn) ≤ e−Ω(λ)

(µ,λ) MOSA-EA Any n ≥ k ∈ Ω(n), ⌈m⌉ < 2A (1 + ln(pinc)/ln(α0) − o(1)) k 3 E [T ] = O
!
n2 log(n)

"

1With the initial population P0 = {0k∗n−k}λ
2λ, µ ∈ poly(n)
3For some constants pinc < 2/5, α ≥ 4, A > 1 based on restrictions in Theorem 5 of the Paper.
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Proof Idea

Mutation rate

Fitness

Dense fitness valley

Sparse local optima 
with high fitness

Sparse local optima 
with low fitness

Optimising

Error threshold 

Error threshold 

The error thresholds for sparse and dense regions are different.

MOSA-EA maximises fitness and mutation rate on Pareto fronts.

For each individual, the mutation rate will be closed to its error threshold.

Individuals with mutation rates larger than error thresholds will “vanish” in
the next generation.

Partition the two-dimensional search space into “fitness levels” and
“mutation rate sub-levels”

Use the level-based theorem (Corus et al., 2018) to derive the runtime.
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Supplemental Experimental Results

MOSA-EA outperforms other heuristic algorithms on
random NK-Landscape (maximisation, above) and
random k-Sat (minimisation, below).

More empirical analyses will be published in (Qin & Lehre, PPSN’22).

Figure: The best fitness value achieved in 108 fitness evaluations on 100 random
NK-Landscape (n = 100) (above) and k-Sat (k = 5) (below) instances
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Summary

Novelty:

MOSA-EA treats parameter control as another objective.

Significance:

MOSA-EA can escape local optima with unknown sparsity
MOSA-EA can outperform other EAs on complex
optimisation problems.
MOSA-EA is free to set mutation rate.

Next steps:

Performance in more scenarios?
Self-adapt more parameters?
. . .
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Thank you

Title: Self-adaptation via Multi-objectivisation:
A Theoretical Study

Authors: Per Kristian Lehre & Xiaoyu Qin
xx {p.k.lehre, xxq896}@cs.bham.ac.uk

Code can be found here:
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A Framework of Self-adaptive EAs
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More Experimental Results in (Qin & Lehre, PPSN ’22)
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Figure: The highest fitness values found in the end of runs in 108 fitness
evaluations on 100 random NK-Landscape instances with different k
(n = 100).
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Figure: The medians of the smallest number of unsatisfied clauses found in 108

fitness evaluations on 100 random k-Sat instances with different total numbers
of clauses m (k = 5, n = 100).
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